Elements of a wireless network

- **wireless hosts**
 - laptop, PDA, IP phone
 - run applications
 - may be stationary (non-mobile) or mobile
 - wireless does not always mean mobility

network infrastructure

Elements of a wireless network

- **base station**
 - typically connected to wired network
 - relay - responsible for sending packets between wired network and wireless host(s) in its "area"
 - e.g., cell towers, 802.11 access points

network infrastructure

Elements of a wireless network

- **wireless link**
 - typically used to connect mobile(s) to base station
 - also used as backbone link
 - multiple access protocol coordinates link access
 - various data rates, transmission distance

network infrastructure

Elements of a wireless network

- **infrastructure mode**
 - base station connects mobiles into wired network
 - handoff: mobile changes base station providing connection into wired network

network infrastructure

Elements of a wireless network

- **ad hoc mode**
 - no base stations
 - nodes can only transmit to other nodes within link coverage
 - nodes organize themselves into a network: route among themselves

network infrastructure

Elements of a wireless network

- **Some wireless link standards**

<table>
<thead>
<tr>
<th>Standard</th>
<th>Indoor 10-30m</th>
<th>Outdoor 50-100m</th>
<th>Mid-range outdoor 200m – 4 km</th>
<th>Long-range outdoor 5km – 20 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-95, CDMA, GSM</td>
<td>200</td>
<td>54</td>
<td>5-11</td>
<td>1</td>
</tr>
<tr>
<td>802.11</td>
<td>.384</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>802.16</td>
<td>.056</td>
<td>20</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>802.15</td>
<td>200</td>
<td>200</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>UMTS/WCDMA, CDMA2000</td>
<td>802.11 (WiMAX)</td>
<td>802.15</td>
<td>802.16</td>
<td></td>
</tr>
</tbody>
</table>
Wireless network taxonomy

<table>
<thead>
<tr>
<th>Single Hop</th>
<th>Multiple Hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure (e.g., APs)</td>
<td>Host may have to relay through several wireless nodes to connect to larger Internet: mesh net</td>
</tr>
<tr>
<td>No infrastructure</td>
<td>No base station, no connection to larger Internet. May have to relay to each other a given wireless node MANET, VANET</td>
</tr>
</tbody>
</table>

Wireless Link Characteristics (1)

- **Differences from wired link ...**
 - Decreased signal strength: radio signal attenuates fast
 - Interference from other sources: wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
 - Multipath propagation: radio signal reflects off objects ground, arriving to a destination at slightly different times

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - Larger SNR is good!
- SNR versus BER (Bit Error Rate) tradeoffs
 - Given physical layer: increase power → increase SNR → decrease BER
 - Given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

IEEE 802.11 Wireless LAN

- **802.11b**
 - 2.4-5 GHz unlicensed spectrum
 - Up to 11 Mbps
- **802.11a**
 - 5.6 GHz range
 - Up to 54 Mbps
- **802.11g**
 - 2.4-5 GHz range
 - Up to 54 Mbps
- **802.11n**: multiple antennae
 - 2.4-5 GHz range
 - Up to 200 Mbps

- All use CSMA/CA for multiple access
- All have base-station and ad-hoc network versions

802.11 LAN architecture

- Wireless host communicates with base station
 - Base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - Wireless hosts
 - Access point (AP): base station
802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz
 - 11 channels
 - AP admin chooses frequency for AP
 - channel can be same as that chosen by neighboring AP!
- host: must **associate** with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication
 - will typically run DHCP to get IP address in AP's subnet

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA - sense before transmitting
 - don’t collide with ongoing transmission by other node
- 802.11: no collision detection
 - difficult to receive (sense collisions) when transmitting due to weak received signals (Fading)
 - can’t sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for DIFS then transmit entire frame (no CD)
2 if sense channel busy then start random backoff time
 timer counts down while channel idle
 transmit when timer expires
 if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK return ACK after SIFS (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: allow sender to “reserve” channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they’re short)
 - BS broadcasts clear-to-send CTS in response to RTS
 - CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Collision Avoidance: RTS-CTS exchange

avoid data frame collisions completely using small reservation packets!
802.11 frame: addressing

Address 1: MAC address of wireless host or AP to receive this frame
Address 2: MAC address of wireless host or AP transmitting this frame
Address 3: MAC address of router interface to which AP is attached
Address 4: used only in ad hoc mode

802.11 frame: more

frame type (RTS, CTS, ACK, data)
duration of reserved transmission time (RTS/CTS)
frame seq # (for RDT)

802.11: mobility within same subnet

● H1 remains in same IP subnet: IP address can remain same
● switch: which AP is associated with H1?
 ● self-learning (Ch. 5): switch will see frame from H1 and “remember” which switch port can be used to reach H1

802.11: advanced capabilities

Rate Adaptation
● base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

1. SNR decreases, BER increase as node moves away from base station
2. When BER becomes too high, switch to lower transmission rate but with lower BER

Power Management
● node-to-AP: “I am going to sleep until next beacon frame”
 ● AP knows not to transmit frames to this node
 ● node wakes up before next beacon frame
● beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 ● node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame
802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

802.16: WiMAX

- like 802.11 & cellular: base station model
 - transmissions to/from base station by hosts with omnidirectional antenna
 - base station-to-base station backhaul with point-to-point antenna
- unlike 802.11:
 - range ~ 6 miles (“city rather than coffee shop”)
 - ~14 Mbps

802.16: WiMAX: downlink, uplink scheduling

- transmission frame
 - down-link subframe: base station to node
 - uplink subframe: node to base station

- WiMAX standard provide mechanism for scheduling, but not scheduling algorithm