LUND UNIVERSITY

ALGORITHMS IN SIGNAL PROCESSORS

ETINS&O

Speech Recognition using a DSP

Authors:

Mattias Sonnerup

Mingzhe Guo

Venkatesh Prasath Manoharan
Ripudaman Khattar

Gani Kumisbek

Supervisors:
Mikael Swartling
Nedelko Grbic

[LUND

UNIVERSITY

March 16, 2018

Contents

1

2

Introduction

Overview of the implementation

2.1 Pre-processing phase L
2.2 Processing phase
2.3 Matching Phase
2.4 Recording Phase

3 Matlab

4 Wiener Filter

5 Levinson Algorithm
6 Schur Algorithm

7 Conclusion
References

W W N NN

1 Introduction

Speech recognition is becoming more common in today’s society. Appearing in phones as
well as other technology to help carry out voice instructions. With voice recognition like
Siri and Amazon’s alexa being so easy to use for looking up information and controling
other technology, it is of no surprise that the demand for it is increasing. When demand
for a technology increases it also becomes important for engineers to learn more about the
technology behind it, in order to make better implementations of it.

The purpose of this project is to learn the very basic of speech recognition by implement-
ing a system on a DSP that can distinguish between a few spoken words. At the beginning
of the project we started with distinguishing between two words in matlab. In later stages
we expanded the system to a DSP and distinguish between three instead of two.

2 Overview of the implementation

The system can be divided into three phases the pre-processing, processing and match-
ing/recording phase.

2.1 Pre-processing phase

In the pre-processing state a signal from a microphone (DSP) or from a .wav file (matlab)
is put through a filter as displayed in the figures below.

The filter is a convolution of a notch and pre-emphasis prefilter. The notch filter will filter
out the noise in low frequency, while the pre-emphasis filter will raise the high frequency
part in speech for distinguishing. We mix them up to get a combination of them by doing
convolution for the filter coefficients, by doing so, our prefilter can have the function of
both. In DSP, we use a function called ’biquad’ to design that prefilter. The coefficients of
A2,A1,B2,B1,B0 are -0.95,10.75,-1.75,1 respectively for the filter transfer function.

_ B(0) + B(1)z"! + B(2)z?
B = T A T AR

2.2 Processing phase

After filtering is done, the signal is processed in blocks. Each block consists of 320 samples
that is equivalent to 20 miliseconds of speech. At the start of the phase the autocorrelation
of a block is calculated. The autocorrelation is then used to generate coeffients of a wiener
filter for the block, which is done through the levison and schur algoritmn. In this project
15 coeffients are generated for each block. When the coefficients are generated they are then
saved into memory. Finally the phase is repeated for 100 blocks, which is equivalent to two
seconds, before moving onto the recording phase or the matching phase.

Magnitude (dB)
8
TN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mormalized Frequency (=« rad/sample)

BIJ?
|

60 H
T

w

[k}

da

|-

n

]

@ \

> a0l — ‘“\\\\\

E ‘_\-‘-‘_\—_____\-‘
[V

20} —
—

1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (=« rad/sample)

2.3 Matching Phase

In the matching phase the blocks are divided into 10 parts, where each part consists of 10
blocks. After that the average of each part is calculated to produce 15 coefficients for each
part. When the 10 by 15 coefficients have been produced the actual matching begins. The
coefficients are compared to three databases that each store the coefficients of a word. If the
coefficients match a database, the spoken word will be detected as that of the word in the
database. Feedback from the system is communicated through leds. If led 1 lights up the
first word is detected, if led 2 lights up the second word is detected and if both leds light up
the third word is detected.

2.4 Recording Phase

In order to make the matching work, there needs to be a recording phase where the coefficients
for the words of our choosing is stored to then be used for matching. For this project the
words ”you”, ”chair” and ” Amend” were the words that we eventually selected to distinguish

between. If the system is set to record it will enter recording phase and print out the 10x15
coefficients that can then be put into the database.

1400

1200 +

1000 +

800 r

difference

600
400 f,

200

1 2 3 4 5 5] 7 8
voice index

3 Matlab

Before transferring to DSP, We tried the algorithm on Matlab to check the result first. We
recorded 8 voice files in a sample rate of 16000, 6 of them are 'hello’, one is 'table’, and
another one is 'chair’. These data are put into a prefilter at first to filter out noise and
emphasis high frequency part. Then, we calculate the autocorrelation of them, and apply
the correlation result on levison algorithm, and use the coefficients from levinson as the key
part for recognition. Then we calculate the mean value for these coefficients, and calculated
the difference between them, which is a sum of the absolute value of the difference between
each element in all the voice coefficients. The result is shown below. In that figure x axis
is voice index, y axis is difference. index 1-6 are 6 ’hello’s, 7 is 'table’ and 8 is 'chair’. It is
obvious that the difference between different 'hello’s are always smaller than the differences
between ’hello’ and ’table’ and ’'chair’. By doing so, we can judge which voices are the
same one, and which are different from them. That means our method is correct in speech
recognition.

4 Wiener Filter

The incoming signal is often corrupted by an ambient noise, such as background chatter,
shuffles, steps and other undesirable sounds. In order to overcome this issue, we have used
the Wiener filter. The Wiener filter is a statistical filter which compares the received signal

with a desired noiseless signal. The output of such filtering should have a minimum mean
square error.

5 Levinson Algorithm

There are two algorithms used in this project: Levinson and Schur algorithms. Both of
these algorithms use feature coefficients from a stationary signal. In order to analyze the
shape of incoming (stationary) signal of a short segment of speech with a limited number
of parameters for computationally efficient program, Levinson - Durbin algorithm is often
used. By definition, Levinson - Durbin algorithm is a recursive algorithm that utilizes a
Toeplitz symmetry property of autocorrelation matrix, a property of a matrix in which each
descending diagonal from left to right is constant. This algorithm helps us to determine
the coefficients of the filter that predicts the next value in a sequence from current and the
previous inputs as well as reflection coefficients.

6 Schur Algorithm

Compared to the Levinson algorithm, the Schur algorithms only uses the reflection coeffi-
cients to extract feature vectors through matrix multiplication.In Matlab, we can use function
"schurrc’ to apply schur function, or use ’tf2latc’ function to transfer Levinson redults into
schur results. Schur is considerably faster than Levinson, but much more difficult to imple-
ment on C code. In the C code we use the coefficients in Levinson algorithm as the Schur
coeffients instead.

7 Conclusion

The goal of the project was pretty much achieved; we managed to distinguish more than two
words of the basic requirements. These words were to able match for different speakers, our
speech recognition program can distinguish between three words for multiple speakers with
satisfying results. we got incorrect matches sometimes which we assume may be because of
the length of the word or noise or through by choosing incorrect threshold. Due to length
of different words it was difficult for us to match the threshold for all the words which made
the task hard to implement. Definitely there will be some way to make this work perfectly
which requires good filtering techniques which is beyond this course.

References

[1] Empty Loop: Linear Prediction and Levinson-Durbin Algorithm ,
http://www.emptyloop.com/technotes

[2] LPC:Implementation of Linear Predictive Coding (LPC) of Speech,
http://www.seas.ucla.edu/"ingrid/ee213a/speech/vlad present.pdf

[3] MatLab:Developing an Isolated Word Recognition System in MATLAB
https://se.mathworks.com/company/newsletters/articles/developing-an-isolated-word-rec

[4] MatLab :Speech recognition using MFCC and LPC
https://se.mathworks.com/matlabcentral/fileexchange/36398-speech-recognition-using-mf

