
Design and implementation of a Beat Detector algorithm
(ETIN80 report)

Jaime Gancedo, ja1626ga-s@student.lu.se
Sakif Hossain, sa5536ho-s@student.lu.se
Wenpeng Song, we3543so-s@student.lu.se

March 11, 2018

Abstract

This document presents the theoretical study and design of a beat detection
algorithm. This program aims at being able to estimate the Beats Per Minute (BPM)
of any song by simply feeding it as an input to a Digital Signal Processor (DSP)
and displaying the detected beat by lighting up a Light Emitting Diode (LED).
The algorithm was first developed in Matlab, for testing and design purposes, and
later translated to C. The translation to C was carried out to be able to program
a specific DSP board (SHARC ADSP-21262) and run the algorithm in it. Final
simulation results achieved with this algorithm, development setbacks, challenges in
the physical implementation and conclusions are also presented.

1 Introduction

This report contains the theory, design and implementation on a DSP board of a beat
detection algorithm, a project for the course ”ETIN80 - Algorithms for Signal Proces-
sors”. The algorithm was first studied and simulated in Matlab, checking that, given
any song, it may calculate a reasonably accurate estimation of its BPM for every in-
put sample block. Namely, the obtained beat should have a precision of at least 0.1
BPM. Once validated for this specific case, the algorithm was then translated to the C
language, witih the aim to be implemented and tested in a physical DSP system.

2 Theoretical study

To achieve the described behavior, it is necessary to develop a signal processing algorithm
capable of discerning the frequency at which the song’s rythm happens. This is done in
several steps, which are described in order in this section. It is important to note that
the following operations and steps are performed every time a new block is available
for the DSP to process. The size of the block, in sound samples, is configurable, and
different sizes yield different accuracies for the algorithm’s output, while at the same
time drawbacks such as lower or higher memory consumption and computational cost.

1



The value we chose to achieve a compromise was M = 280 blocks. The following steps
are repeated for a specific number of blocks, which we define as the ”Window size”
W . For a good performance, the chosen value for the window size is W = 2048. This
theoretical study will be exemplified with a 5 seconds extract of Iron Maiden’s ”Run to
the hills” song, which signal amplitude in time is shown in Figure 1.

Figure 1: Amplitude in time of ”Run to the hills”

2.1 Power recursive calculation

The first step consists on calculating the accumulated power of the signal (based off
previous signal values). A shift-register of W values is used to store power results, so for
every new calculation this register is shifted left, making room for the new power value.
The block’s average is the first calculated term in this process as:

xavg =

M−1∑
n=0

x[n]2 (1)

Where M is the block size. Then, the accumulated power (represented as a recursive
operation) is expressed as:

P [n] = α · P [n− 1] · (1− α) · xavg (2)

Where P [n] is the current power value, P [n − 1] is the last calculated power value
and α is a constant that can be selected for the best possible results. In our case, this

2



value is α = 0.8. The result of this series of steps, once at least W blocks have been
processed, is a registered history of the instantaneous power of the signal, which can then
be used to perform frequency calculations. A graphical representation of this history can
be observed in the following section.

2.2 Frequency representation and fine-graining

With the latest signal’s power history, it is then possible to obtain the spectral power
density of the input by performing the Fast Fourier Transform (FFT) to the stored
power values. The spectral power density represents how the power of the signal is
distributed for each frequency, and in this case it may be used to determine in which
specific frequency the highest power is contained. The spectral power density, along with
the power history, is presented in Figure 2.

Figure 2: Power history (up) and spectral power density (down) for block #1600

For this specific application, we are interested in the frequency range corresponding
to:

BPM ∈ [60, 180]

As this is the typical range for modern music. Taking into account that the conversion
between frequency (in Hz) and BPM is defined as:

f =
BPM

60

The frequency range that is interesting for this application is:

f ∈ [1, 3]Hz (3)

3



Since the window size is W = 2048, the result of the FFT of the power history will
also have 2048 points, or bins. Therefore, the bins of interest for this particular case
will be from #11 to #36, and the maximum power value in these frequencies can be
obtained to extract the song’s BPM.

However, with the previous taken into account, the frequency separation between
two consecutive bins will be:

δf =
fs

M ·W
=

48000

280 · 2048
= 0.0837Hz

Where fs is the sampling frequency in Hz. δf is, in fact, the frequency resolu-
tion we will obtain with this procedure. A resolution of δBPM = 0.1 corresponds to
a δfobj = 0.0017Hz, which is much finer than that our algorithm so far can provide.
To overcome this inconvenience, it is possible to improve the frequency resolution in a
specific range by performing the Discrete Fourier Transform (DFT) of the power history
for that range. This operation is very computational costly, but in this case that should
not be a problem, if designed intelligently.

The first step is deciding which frequency range will be fine-grained with the DFT.
For that, some variables are known: The FFT bin in which the maximum power is (kmax)
and the fact that, because of the way the FFT work, the real fine maximum is situated
somewhere next to this maximum power index. More concretely, it will happen between
the identified maximum bin and its neighbor with the highest power. Exploiting this,
the DFT can then be calculated in the range:

DFTrange ∈ [kmax, kmax + 1]

or
DFTrange ∈ [kmax − 1, kmax]

depending on the current FFT values.
Once this range is known, the number of points for the DFT must be determined.

In this decision, a compromise between frequency resolution and computational cost
has to be made. Taking into account that de desired value for frequency resolution is
δf = 0.0017Hz, the DFT step can then be defined as:

δk =
δBPM
60 · δf

(4)

which, in this case, yields a DFT step of:

δk = 0.0199

or, equivalently, 50 DFT points.
With all the previous in mind, the DFT can then be calculated via its expression

(particularized with the variables for this case):

X[k] =
M−1∑
n=0

P [n] · e−
j2πkn
M (5)

4



Which can then be rewritten as:

X[k] = e−
j2πk
M ·

M−1∑
n=0

P [n] · e−
j2πk(n−1)

M (6)

In this new form, an optimization can be performed to reduce then number of calcu-
lations in every DFT iteration. This is, for the first calculation in every iteration where
n = 1, the DFT is then be evaluated as:

X[k]|n=1 = e−
j2πk
M · P [1]

which allows to estimate the DFT-iteration value of the common term and re-use it for
the rest of the summation iterations, saving a huge amount of precious computational
time. In Figure 3 a comparison of the FFT and the DFT in the power maximum region
obtained with the described algorithm is shown.

Figure 3: FFT of region of interest (up) and DFT of maximum and neigbors (down) for
block #1600

At the end of every DFT iteration, the result may be evaluated as the current maxi-
mum. If this result is not the new maximum, since in this case the function is unimodal,
we may assume that then no more maximums will be found and terminate early the
DFT calculations saving the previous DFT maximum index as the result. Again, this
can save a lot of computational time.

In the end, the fine frequency value corresponding to the obtained DFT index can
be calculated as:

fbeat =

{
fs·(kmax+mmax·δf )

M ·W , for DFTrange ∈ [kmax, kmax + 1]
fs·((kmax−1)+mmax·δf )

M ·W , for DFTrange ∈ [kmax − 1, kmax]

}
(7)

5



where mmax is the DFT index (from 0 to 49 for the example case). This value can then
be converted to BPM again multiplying by 60.

A Matlab simulation of the output of this algorithm is shown in Figure 4, where it
can be seen that, without the DFT optimization, the instantaneous value of the output
is correct, but presents steps which are maybe too broad to obtain a correct precision
(specially in the case of a real-time algorithm). In other words, this lack of frequential
resolution also means that fine steps in the BPM output would be overlooked.

Figure 4: Algorithm’s output BPM without optimization (up) and with the DFT opti-
mization (up)

3 Implementation on the DSP

Once validated with the theorical study and the shown simulations, the beat detection
algorithm had to be translated to C in order to use such translation to program the
DSP board provided in the course, which core is the SHARC ADSP-21262. This phase
was probably the one that required the most effort, as many problems related to the
hardware constraints were faced.

One of the most important was the memory size constraints imposed by the DSP
architecture. The algorithm had to be adjusted several times to try to overcome this
issue. At first, the block size was reduced from the estimated 350 samples in simulation
down to 280, which was the highest possible value that could still fit in the data memory.
However, this block size is not enough for the proposed algorithm to function properly.
After some research, the solution to ”expand” memory space and be able to use a
block size of 350 samples was found: the compiler directive ”pm”. This keyword is
used when declaring a variable to indicate the compiler that it may be stored in the

6



program memory, if enough space is available. Making use of this, some variables in
the C implementation could be re-allocated to the program memory in order to fit all
necessary variables between the data and program memories, allowing the use of a block
size of 350.

It is also interesting to explain the reasons why this algorithm presents such a high
memory consumption:

• The nature of the magnitude being measured demands the algorithm to
store information for a long period of time. The BPM information of a song,
that is, the rythm or actually the ”main beat” is repeated cyclically throughout
the song, but only happens once every 0.33 to 1 seconds (see (3) in Section 2).
Depending on the sampling rate, the minimum necessary observation time for the
algorithm to start giving an output may be very high. In this case, a 16kHz
sampling rate was found to work best but, for that configuration, the DSP needs
around 45 seconds of initialization time.

• The tools used in the proposed algorithm demand the use of complex
numbers. These are, mainly, the DFT calculations, apart from some auxiliary
variables that are needed for the calculation of the initial FFT in every iteration.
Every complex float represented variable is actually two float variables contained
in a struct, so this multiplies the used memory by a single float by two which, in
the case of arrays, demands huge amounts of memory.

On a different note, due to the fact that the C implementation of this algorithm in
the provided DSP needs a long initialization time, the time that the output needs to
reflect changes from the input is also high. This means that, for instance, if the song
currently being played stops for some seconds, and then a different song starts playing,
the algorithm will provide incorrect values for approximately 45 seconds (in this case).

The initialization time, or the processing latency of the algorithm in seconds, can be
expressed as:

L =
M ·W
fs

(8)

where fs is the sampling rate. Since the latency is inversely proportional to the sampling
rate, the higher the sampling rate, the lower the latency. Therefore, one possible solution
for using this algorithm with a reduced latency would be to either optimize it further,
or utilize a different DSP with higher performance, so that the sampling rate can be
increased while still being able to process every block in time.

4 Conclusions

The different phases of this project, and the challenges that it has posed have been very
educational. The theoretical study and high-level implementation that were carried out
for simulation and validation purposes were extremely valuable and interesting, and

7



made us understood better how the algorithm actually worked, and what the effect of
the configuration parameters were, such as the block size or the sampling rate.

During the implementation on the physical DSP, it was also interesting to realize
the challenge in translating a Matlab script to a ”real-world” C program to be run in
physical hardware, with its own limitations and requirements. In the beginning, this
task’s difficulty was clearly underestimated.

Finally, it is worth highlighting the use of tools like the FFT or the DFT in a practical
case, which is fairly enriching, as a personal opinion. Furthermore, facing the challenge
of improving what one thinks is an already good program/algorithm is not an easy task,
and this situation is rarely encountered in most academic courses.

In conclusion, despite the difficulties and problems throughout the course, this project
has been very valuable, interesting and fun as whole.

8


