
EIT DEPARTMENT, LUND TEKNISKA HOGSKOLA

ETIN80 Algorithms in Signal Processors:
Adaptive Line Enhancer

By: Kevin Skaria Chacko, Roshan Cherian

Instructor: Mikael Swartling

March 6, 2018

1 INTRODUCTION

The purpose of the project is to implement an Adaptive Line Enhancer (ALE) on the DSP. The
goal of the ALE is to remove any tonal components from a signal by using adaptive filtering.
This can be done by using a LMS algorithm, which predicts the filter weights for a Wiener filter.

This implementation can be used in noisy environments (industrial and military) where
you want to suppress tonal components (e.g. sound from horns or industrial equipment) but
retain the speech. Another application of this could be in sound recording, to get rid off the
noise. In a real life situation it is most likely that the disturbing tonal signal is not known.
Therefore the ALE needs an adaptive filter to predict what signal to be removed.

Figure 1 shows the block diagram of the LMS algorithmic implementation using the Wiener
filter as described above. The input signal is delayed and sent through the LMS algorithm and
then compared to the non delayed input signal. This process is repeated until the optimal filter
coefficients are found. The delay needs to be so adjusted so as to make all the uncorrelated
parts of the signal pass through unaltered and all the correlated parts to be suppressed.

The algorithm was first needed to be implemented on matlab and then subsequently needed
to be coded for the DSP. Implementation on the DSP was the critical part of this project since
algorithm implementation in matlab is not real time as compared to the DSP. That is the
computation in a DSP needs to be performed before the occurrence of the next sample. Imple-
menting the algorithm by keeping these considerations is the key to a efficient implementation

2



Figure 1.1: Block Diagram of ALE

of the the algorithm on the DSP. The memory limit on the DSP puts further restriction on the
implementation and forces to take care of the coding style.

New problems might arise when implementing an algorithm on a DSP versus matlab as the
DSP has real-time requirements that the architecture of the DSP has to account for. This mean
that the computation must be completed before the next sample occurs. Choosing the right
algorithm and implementing it efficiently is the key to meet the computational requirements.
The DSP is also limited in memory which means that it is important handle data correctly and
efficiently.

2 HARDWARE SETUP

The DSP selected for this project was an Analog Devices ADSP-21262. The code is written in C
and compiled using Visual DPS 5.1. The hardware setup consists of a line in to the tonal sound
source, a headphone out(or speaker out), four buttons (on board). The 4 switch buttons are
used for the following tasks:

• Switch to tonal input source

• Switch to filtered ALE output source

• Reset filter coefficients with a default predefined step size

• Reset filter coefficients with a smaller predefined step size (for realizing the working of
the filter)

The image of the complete setup is given in figure 2

3



Figure 2.1: Hardware Setup for ALE based tone eliminator

3 THEORY ON ALE, WIENER FILTER, LMS

The Adaptive Line Enhancer (ALE) is an effective learning filter for reducing Gaussian noise
with a large SNR. The filter adjusts the filter weights to pass the desired input signal while
reducing the noise portion of the signal with little to no filter roll-off up to the Nyquist rate
(Fs/2). An adaptive filter can alter its own frequency response in order to improve the filterâĂŹs
performance on-the-fly.

The Wiener filter is used because since there is an input signal and a desired signal and the
data regarding their occurrences are not known. It is based on the Steepest Decent concept
where the filter converges to the optimal solution. The following figure explains the working of
the Wiener filter.

Least mean squares (LMS) is class of adaptive filter used to mimic a desired filter by finding
the filter coefficients that relate to producing the least mean square of the error signal (differ-
ence between the desired and the actual signal). The filter coefficients wo = [w1, ..., wn] are
tuned such that they minimize the error e(n) in the mean squared sense.

The purpose of the LMS algorithm is to find the near optimal filter coefficients for a given
input signal. The LMS method is based on the method of the steepest descent with the dif-
ference that the coefficients are continuously estimated. This feature of the LMS algorithm
makes it adaptive and suitable for input signals that change over time.The difference between

4



Figure 3.1: Wiener filter

the Wiener filter and the LMS algorithm can be seen in figure 3 where the Wiener filter using
steepest descent converges to the optimal solution, but the LMS has a constant error and
never fully reaches the optimum.

(a) Convergence of Steepest D. (b) Convergence of the LMS

One problem with the standard LMS algorithm is that the step size is fixed. This creates
problems when,for example, the amplitude of the signal is altered. If this is the case the
algorithm might not converge in sufficient time, or diverge. To safeguard against this NLMS
normalizes the amplitude.

3.1 IMPLEMENTATION STEPS

3.1.1 ALGORITHM

The algorithm was first implemented in matlab to test and verify that the algorithm was
working, and the filter used gave the correct response. Using matlab is a good way to focus on
the algorithm and to get it working without putting much thought about the hardware. The
tonal wave files were read into matlab and played back after implementation of the filter to
verify successful implementation of the filter in matlab. Once the verification was done, fine

5



tuning of the parameters was done till a clean sound signal free from tones was obtained from
the headset.

3.1.2 IMPLEMENTATION ON DSP

When the implementation was successful and approved, it was translated to C code. The
algorithm was then integrated with the framework provided in the course and modified as per
our requirements. The final tests were done by streaming music with an added/superimposed
sinusoid made using a sound editing software and through the algorithm and listening to
whether or not the tonal sinusoid is successfully removed. Again the parameters were modified
to get the optimal response from the DSP.

3.2 CONCLUSIONS

The ALE along with the LMS was used for our implementation.It took a lot of trial and error
with the step-size and delay-size to get it to sound as good as possible. The theoretical and
matlab code did not fully comply with the final values we had to use for the DSP. When the
C code was run on the DSP in the Debug(Default) mode, it did not give results as expected.
On changing the mode to Release, the algorithm worked smoothly. This was because of the
optimization done in the Release mode. The goal of the course was finally met. It gave us a
better understanding of adaptive filters and LMS algorithm. Thus, the study of LMS algorithm
and its application in ALE was understood and successfully implemented on the DSP.

3.3 DISCUSSION

The LMS was successfully implemented in C and run on the DSP. Having a small step size
caused the signal to converge slowly and if it was to big caused it to diverge. We observed that
the step-size of 0.1 was ideal and at a step size of 0.01 for slow convergence (to show case the
effect of convergence) for the DSP implementation. The improved version of LMS, the NLMS
was implemented on matlab but due to time constraints were not able to implement on the
DSP. We set the delay for the DSP at 400 samples. This delay had to be large enough for the
music to be uncorrelated, but small enough to not use up too much memory. In contrast to
matlab, we found that it was hard to hear the difference after a while when increasing delay.
We used a filter size of 100. The filter was similar to the one we used in matlab and was fairly
consistent.

6


