F14 – Memory Circuits

Outline
- Combinatorial vs. sequential logic circuits
- Analogue multivibrator circuits
- Noise in digital circuits
- CMOS latch
- CMOS SR flip flop
- 6T SRAM cell
- 1T DRAM cell
- Memory column-row-block organisation
- Memory peripheral circuits
 - Sense amplifiers, (address decoders, clocks, etc.)

Reading Guide Sedra/Smith 7ed int
- Chapter 14.4 (bistable multivibrators)
- Chapter 17.1-17.4.1 memory cells
- (Chapter 17.4.2-17.6 (address decoders, ROM, image sensor))

Problems Sedra/Smith 7ed int
- P17.2, 17.4, 17.15, 17.19
Combinatorial vs. Sequential Logic Circuits

- Digital systems require logic gates and memory circuits
 - Perform logic operations and save the result
 - Store input data until needed in an operation
 - …

- Combinatorial logic circuits (logic gates)
 - Given a specific input, output is always the same

- Sequential logic circuits (memory circuits)
 - Given a specific input, output may depend on history
Analogue Multivibrator Circuits

- Bistable, a.k.a. latch
 - Retains its state until change is triggered
 - A circuit with two stable operating points, e.g. an op amp with positive feedback

- (Astable, a.k.a. function generator)
 - Switches states periodically
 - Self-triggered bistable multivibrator utilising an additional feedback circuit with delay

- (Monostable, a.k.a. pulse generator)
 - Switches state momentarily when triggered
 - A circuit with one stable state and one quasi-stable state that initiates self-triggering at predefined delay

Bistable circuits exhibit memory functionality, but analogue versions are large and power hungry.
Bistable Multivibrator Operation

- Trigger input applied to either of “grounds” in bistable multivibrator circuit

- Toggling output from high to low, using trigger at inverting input

\[v_+ = \beta v_O, \quad v_O = A(v_+ - v_-) \rightarrow L_\pm \]

\[v_- = v_I < v_+, \quad v_+ = \beta v_O = \beta A(v_+ - v_-) \rightarrow \beta L_+ \]

\[v_I > \beta L_+ \Rightarrow v_+ - v_- < 0 \Rightarrow v_O = L_- \Rightarrow v_+ = \beta L_- \]

Trigger input point determines if characteristic is inverting or non-inverting.
Noise Sources

- Power supply noise due to switching logic gates, output stages, etc.

- Thermal noise (hot electron noise)
 - Carrier energy fluctuations due to temperature (apparent temperature)

 \[
 S_{v,\text{Thermal}}(\omega) = \frac{\overline{v^2}}{\Delta f} = 4kTR \quad \leftrightarrow \quad S_{v,\text{Thermal}}(\omega) = \frac{i^2}{\Delta f} = 4kT\gamma
 \]

- Shot noise
 - Carrier fluctuations due to MOSFET gate tunnelling

 \[
 S_{i,\text{Shot}}(\omega) = \frac{i^2}{\Delta f} = 2qI_G
 \]

- Burst noise
 - Carrier fluctuations due to MOSFET channel interaction with a trap with a time constant

 \[
 S_{i,\text{Burst}}(\omega) = \frac{i^2}{\Delta f} = k_{\text{Burst}} \frac{I_D}{1 + (\omega\tau)^2}
 \]

- Flicker noise
 - Carrier fluctuations due to MOSFET channel interaction with multiple traps with evenly distributed time constants

 \[
 S_{i,\text{Flicker}}(\omega) = \frac{i^2}{\Delta f} = k_{\text{Flicker}} \frac{I_D}{f}
 \]
Basic CMOS Latch

- Latch (bistable multivibrator) circuit
 - Retains its own output signal by means of positive feedback

- Basic CMOS latch
 - Two inverters in positive feedback loop
 - Inverted output fed back to input of the same inverter
 - Three possible operating points
 - Low/ high
 - Midpoint
 - High/ low

<table>
<thead>
<tr>
<th>W</th>
<th>X = Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Latch provides volatile memory, requiring power supply for data storage, at minimal static power.
Basic Latch Operation

- Three possible operating points
 - A: Low/ high
 - B: Midpoint (unstable)
 - C: High/ low

- Operation at slight offset above/ below B will initiate regenerative latch process towards A/ C

- Inverter butterfly diagram can be used to illustrate operation points and noise margins
Two inverters in a loop yields latched output, but what about three inverters?
Two Input NOR Gate (recap)

- Logic (boolean) NOT-OR compound function
 - Inputs, \(\{A, B\} \)
 - \(A, B \in \{0, 1\} \)
 - Output, \(Y \)
 - \(Y = \overline{A + B} = \overline{A} \overline{B} = \begin{cases} 1, & (A = 0, B = 0) \\ 0, & \text{otherwise} \end{cases} \)

- CMOS NOR gate
 - PUN, \(Y = \overline{A} \overline{B} \)
 - One series branch with all inputs
 - PDN, \(\overline{Y} = A + B \)
 - One parallel branch for each input

Inclusive OR function, dissimilar from exclusive XOR function.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(Y = \overline{A + B})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Set/ Reset (SR) Flip Flop

- **SR flip flop:** latch with trigger inputs
 - Two NOR gates in latch configuration allow set/ reset trigger operations

- **Storage mode**
 - R and S low, i.e. $\bar{R}\bar{S}$, preserves latched output
 \[Q_{n+1} = \text{NOR}(R, \overline{Q_n}) = Q_n, \quad \overline{Q_{n+1}} = \text{NOR}(\overline{S}, Q_n) = \overline{Q_n} \]

- **Set operation**
 - R low, S high yields Q forced high
 \[\overline{Q_{n+1}} = \text{NOR}(S, Q_n) = 0 \Rightarrow Q_{n+1} = 1 \]

- **Reset operation**
 - R high, S low yields Q forced low
 \[Q_{n+1} = \text{NOR}(R, \overline{Q_n}) = 0 \]

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>Q_{n+1}</th>
<th>$\overline{Q_{n+1}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
<td>$\overline{Q_n}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Not used</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Complementary SR flip flop using NAND gates is also possible, etc.
Clocked SR Flip Flop

- Inverter latch with clocked set/reset inputs
 - Clock, ϕ, form AND functions with respective trigger inputs, S and R
 - Trigger inputs ignored when clock is low, $\bar{\phi}$
 - Clock and trigger inputs use NMOS transistors only

- Requirements for set operation
 - Q5-Q6 sink enough current to pull \bar{Q} below threshold of Q3-Q4 inverter
 - Set signal remains high long enough to cause regeneration to take over the switching process

- Requirements for reset (parallels set due to symmetry)
 - Q7-Q8 sink … Q below threshold… Q1-Q2 inverter
 - Reset signal remains high…

Superior functionality at same transistor count as SR flip flop: clock low enforces storage mode.
Set Operation on Clocked SR Flip Flop: Part I

- Set operation on clocked SR flip flop in reset storage mode
 \[v_\phi = V_{DD}, \quad v_s = V_{DD}, \quad v_R = 0 \text{ V} \]
 \[Q_n = 0, \quad \overline{Q_n} = 1, \quad \phi S \bar{R} = 1 \]
 \[\Rightarrow Q_{n+1} = 1, \quad \overline{Q_{n+1}} = 0 \]
 - Part I: Q5-Q6 must pull \(\overline{Q_{n+1}} \) down past midpoint…
 \[v_Q = 0, \quad v_{\bar{Q}} < \frac{V_{DD}}{2} \Rightarrow I_{D2} < I_{D5} = I_{D6} \approx I_{Deq} = \left. \frac{V_{DD}}{2} \right|_{\frac{W}{L}}^{s,6} \]
 \[I_{D2} = I_{Deq} = i_{Dx} \left(|V_{GS}| = V_{DD}, |V_{DS}| = \frac{V_{DD}}{2} \right) \]
 \[i_{Dx} = k'_x \left(\frac{W}{L} \right)_x \left[V_{DD} - V_{tx} - \frac{1}{2} \left(\frac{V_{DD}}{2} \right) \right] \left(\frac{V_{DD}}{2} \right) \]
 \[\Rightarrow \frac{W}{L} \geq 2 \frac{k'_p (W)}{k'_n (L)} \]
 - Part II: … and hold at least until latch responds

Reset operation parallels that of set operation.
Set Operation on Clocked SR Flip Flop: Part II

- Set operation on clocked SR flip flop in reset storage mode
 \[v_\phi = V_{DD}, \quad v_S = V_{DD}, \quad v_R = 0 \text{ V} \]
 \[Q_n = 0, \quad \overline{Q_n} = 1, \quad \phi S \overline{R} = 1 \]
 \[\Rightarrow Q_{n+1} = 1, \quad \overline{Q_{n+1}} = 0 \]
- Part I: Q5-Q6 must pull \(\overline{Q_{n+1}} \) down past midpoint...
- Part II: ... and hold at least until latch responds
 - Flip...
 \[v_Q = 0, \quad v_{\overline{Q}} = V_{DD} \rightarrow \frac{V_{DD}}{2} \Rightarrow t_{PHL}(Q_{eq} - Q2) = \frac{CV_{DD}}{2I_{PHL}} \]
 - ... flop
 \[v_{\overline{Q}} \approx 0, \quad v_Q = V_{DD} \rightarrow \frac{V_{DD}}{2} \Rightarrow t_{PLH}(Q3 - Q4) = \frac{CV_{DD}}{2I_{PLH}} \]

\[T_{min} = t_{PHL}(Q_{eq} - Q2) + t_{PLH}(Q3 - Q4) \]
\[I_{PHL} \approx i_{Deq} \bigg|_{t=0} = \frac{1}{2} k_n' \left(\frac{W}{L} \right)_{eq} (V_{DD} - V_{tn})^2 \]
\[I_{PLH} \approx i_{D4} \bigg|_{t=t_{PHL}} = \frac{1}{2} k_p' \left(\frac{W}{L} \right)_{4} (V_{DD} - |V_{tp}|)^2 \]

Reset operation parallels that of set operation.
BREAK
6T Static Random Access Memory (SRAM) Cell

- Simplified implementation of the CMOS clocked SR flip flop
 - CMOS inverter latch
 - Q1-Q2 and Q3-Q4
 - Set/reset and output are all provided through clocked access transistors (cf. pass transistor logic)
 - Q5 and Q6

- Storage mode, $\bar{\phi}$

- Reset operation, $\phi\overline{SR}$

- Set operation, $\phi\overline{S}\overline{R}$

- Read operation, ϕ
 - Must be controlled to not accidentally set or reset the 6T cell

This is the industry standard volatile static memory cell.
1T Dynamic RAM (DRAM) Cell

- One single access transistor
- Storage capacitor
 - Logic 0: not charged
 - Logic 1: charged
- Read operation exchanges charges with bit line
- Leakage demands periodic refresh
- Word line boost required to charge storage capacitor to full supply voltage

\[
V_{OV} = V_W - V_{CS} - V_{tn} \Rightarrow V_W = V_{DD} + V_{tn}
\]

1T is dynamic, requiring periodic refresh on millisecond time scale.
Memory Chip Column-Row-Block Organisation

- Memory organisation needed to (time/energy) efficiently read or write data in a controlled fashion
 - Matrix minimizes bit and word line RC time constant
 - Bits stored in columns
 - Words in rows (across columns)
 - Several blocks required for large memories

- Memory peripheral circuits
 - Row and column address decoders, built from combinatorial logic circuits
 - Precharge and equalisation for differential bit line preconditioning
 - Sense amplifiers read data from memory cells
 - Drivers write data into memory cells
6T SRAM Cells in a Memory Block

- Row address lets row decoder activate all access transistors in a specific row

- Column address lets column decoder operate on a pair of complementary bit lines
 - Read to or write from I/O data bus

Memory cycle time is on nanosecond time scale, limited by word line RC and sense response.
6T SRAM Cell Operation Conditions

- Read and write functionality through access transistors
- Read operation must not shift the logic level more than a threshold voltage from stored value
- Write operation must toggle the logic level to within a threshold voltage of new value
6T SRAM Cell: Reading a Stored Logic 1

- Initial data and bit lines precharged to supply voltage

\[
V_{Q_n^-} = 0 \text{ V}, \quad V_{Q_n} = V_{DD}, \quad v_B\bigg|_{t=0} = V_{DD}, \quad v_B\bigg|_{t=0} = V_{DD}
\]

- Non-destructive read 1 operation

\[
v_Q < V_{Q_n^-} + V_{tn} = V_{tn}
\]

\[
\frac{V_Q}{V_{DD} - V_{tn}} = 1 - \frac{1}{\sqrt{1 + \frac{(W/L)_5}{(W/L)_1}}} \frac{(V_{tn})^2}{V_{DD} - V_{tn}}
\]

\[
\frac{(W/L)_{a:5}}{(W/L)_{n:1}} < \frac{V_{tn}}{V_{DD} - V_{tn}}^2 - 1
\]

\[
\Delta Q = I_5 \Delta t = C_B \Delta V \quad \Rightarrow \quad v_B = V_{DD} - \Delta V \quad C_B \gg C_Q
\]

\[
\Delta V = \frac{I_5 \Delta t}{C_B} \quad \Rightarrow \quad \Delta t = \frac{C_B \Delta V}{I_5}
\]

\[
I_5 = \frac{1}{2} k'_n \left(\frac{W}{L}\right)_5 (V_{DD} - V_Q - V_{tn})^2
\]

\[
I_1 = k'_n \left(\frac{W}{L}\right)_1 (V_{DD} - V_{tn} - \frac{1}{2} V_Q) V_Q
\]

Read must not shift data more than a threshold voltage.
6T SRAM Cell: Writing a Logic 0 Over a Logic 1

- Initial data and bit lines precharged to new data
 \[V_{Qn}^- = 0 \text{ V}, \quad V_{Qn} = V_{DD}, \quad v_B\bigg|_{t=0} = V_{DD}, \quad v_B\bigg|_{t=0} = 0 \text{ V} \]

- Successful 1 through 0 toggling
 \[v_Q < V_{Qn+1} + V_{tn} = V_{tn} \]
 \[\frac{V_Q}{V_{DD} - V_{tn}} = 1 - \sqrt{1 + \frac{k_p'(W/L)_4}{k_n'(W/L)_6} \left(1 - \frac{V_{tx}}{V_{DD} - V_{tx}}\right)^2} \]
 \[I_4 = \frac{1}{2} k_p' \left(\frac{W}{L}\right)_4 (V_{DD} - |V_{tp}|)^2 \]
 \[I_6 = k_n' \left(\frac{W}{L}\right)_6 \left(V_{DD} - V_{tn} - \frac{1}{2} V_Q\right) \]

\[\frac{\Delta Q}{C_Q} = I_6 \Delta t \quad \Rightarrow \quad \Delta V = I_6 \Delta t \quad \Rightarrow \quad \Delta t = \frac{C_Q \Delta V}{I_6} \]

\[k_n' = 4k_p' \]

Write must toggle data to within a threshold voltage.
How to boost small differential signal from memory cell to logic levels?

Think, think, think.
Clocked Latch as a Differential Sense Amplifier

- Latch with clocked bias between bit lines
 - First, bit lines are precharged/ equalised
 - Then, word line with addressed memory cell is activated
 - Finally, sense amplifier is activated, latching the detected difference towards full logic levels

\[
v_B \bigg|_{0 < v_B < V_{DD}} \approx \frac{V_{DD}}{2} \pm \Delta V \exp \left(\frac{G_m}{C_B} t \right) = \frac{V_{DD}}{2} \pm \Delta V \exp \left(\frac{g_{mn} + g_{mp}}{C_B} t \right)
\]

Exponential time response, set by latch transistors and bit line parasitics.
Dummy Cells for Differential DRAM Operation

- DRAM cells yield single ended output, not compatible with differential sense amplifier/driver.
- Dummy cells at memory block edge used to simulate differential characteristics.
MOS Differential Amplifier as a Sense Amplifier

- MOS differential pair w/ current mirror load
 - Sufficient differential input switches bias current, I, to one branch
 \[
 \Delta V > \sqrt{2V_{OV}} = \sqrt{\frac{2I}{k_n' \left(\frac{W}{L} \right)_{1,2}}}
 \]
 - Current mirror forces current to/from output, charging/discharging its voltage to either logic level within Δt
 \[
 \Delta t = \frac{CV_{DD}}{I}
 \]
- Increased speed costs static power dissipation
 \[
 P = V_{DD}I
 \]