F14 – Memory Circuits

Outline

- Combinatorial vs. sequential logic circuits ٠
- Analogue multivibrator circuits •
- Noise in digital circuits •
- CMOS latch •
- CMOS SR flip flop ٠
- 6T SRAM cell •
- 1T DRAM cell •
- Memory column-row-block organisation ۲
- Memory peripheral circuits •
 - Sense amplifiers, (address decoders, clocks, etc.)

Reading Guide Sedra/Smith 7ed int

- Chapter 14.4 (bistable multivibrators)
- Chapter 17.1-17.4.1 memory cells
- (Chapter 17.4.2-17.6 (address decoders, ROM, image sensor))

Problems

Sedra/Smith 7ed int

P17.2, 17.4, 17.15, 17.19

Combinatorial vs. Sequential Logic Circuits

٠

٠

•

Analogue Multivibrator Circuits

- Bistable, a.k.a. latch
 - Retains its state until change is triggered
 - A circuit with two stable operating points, e.g. an op amp with positive feedback
- (Astable, a.k.a. function generator)
 - Switches states periodically
 - Self-triggered bistable multivibrator utilising an additional feedback circuit with delay
- (Monostable, a.k.a. pulse generator)
 - Switches state momentarily when triggered
 - A circuit with one stable state and one quasi-stable state that initiates self-triggering at predefined delay

Bistable circuits exhibit memory functionality, but analogue versions are large and power hungry.

Bistable Multivibrator Operation

- Trigger input applied to either of "grounds"
 in bistable multivibrator circuit
- Toggling output from high to low, • using trigger at inverting input $v_{+} = \beta v_{0}, \quad v_{0} = A(v_{+} - v_{-}) \rightarrow L_{+}$ $v_{-} = v_{I} < v_{+}, \qquad v_{+} = \beta v_{O} = \beta A(v_{+} - v_{-}) \rightarrow \beta L_{+}$ $v_I > \beta L_+ \Rightarrow v_+ - v_- < 0 \Rightarrow v_0 = L_- \Rightarrow v_+ = \beta L_ V_{TH}$ 0 UI

Trigger input point determines if characteristic is inverting or non-inverting.

Noise Sources

- Power supply noise due to switching logic gates, output stages, etc.
- Thermal noise(/ hot electron noise)
 - Carrier energy fluctuations due to temperature(/ apparent temperature)

$$S_{v,Thermal}(\omega) = \frac{v^2}{\Delta f} = 4kTR \Leftrightarrow S_{v,Thermal}(\omega) = \frac{i^2}{\Delta f} = 4kTG$$

- Shot noise
 - Carrier fluctuations due to MOSFET gate tunnelling

$$S_{i,Shot}(\omega) = \frac{\overline{i^2}}{\Delta f} = 2qI_G$$

- Burst noise
 - Carrier fluctuations due to MOSFET channel interaction with a trap with a time constant $\overline{i^2}$ I_D

$$S_{i,Burst}(\omega) = \frac{t^2}{\Delta f} = k_{Burst} \frac{I_D}{1 + (\omega \tau)^2}$$

- Flicker noise
 - Carrier fluctuations due to MOSFET channel interaction with multiple traps with evenly distributed time constants

$$S_{i,Flicker}(\omega) = \frac{\overline{i^2}}{\Delta f} = k_{Flicker} \frac{I_D}{f}$$

Vnn

 $R \circ -$

Basic CMOS Latch

- Latch (bistable multivibrator) circuit
 - Retains its own output signal by means of positive feedback
- Basic CMOS latch
 - Two inverters in positive feedback loop
 - Inverted output fed back to input of the same inverter
 - Three possible operating points
 - Low/ high
 - Midpoint
 - High/ low

Latch provides volatile memory, requiring power supply for data storage, at minimal static power.

Basic Latch Operation

- Three possible operating points
 - A: Low/ high
 - B: Midpoint (unstable)
 - C: High/ low
- Operation at slight offset above(/ below) B will initiate regenerative latch process towards A(/ C)
- Inverter butterfly diagram can be used to illustrate operation points and noise margins

Two inverters in a loop yields latched output, but what about three inverters?

Two Input NOR Gate (recap)

1

- Logic (boolean) NOT-OR compound function
 - Inputs, {*A*, *B*}
 - $A,B\in\{0,1\}$
 - Output, Y

$$Y = \overline{A + B} = \overline{A}\overline{B} = \begin{cases} 1, & (A = 0, B = 0) \\ 0, & \text{otherwise} \end{cases}$$

- CMOS NOR gate
 - PUN, $Y = \overline{A}\overline{B}$
 - One series branch with all inputs
 - PDN, $\overline{Y} = A + B$
 - One parallel branch for each input

1

Inclusive OR function, dissimilar from exclusive XOR function.

0

Set/ Reset (SR) Flip Flop

- SR flip flop: latch with trigger inputs
 - Two NOR gates in latch configuration allow set/ reset trigger operations
- Storage mode
 - *R* and *S* low, i.e. $\overline{R}\overline{S}$, preserves latched output

 $Q_{n+1} = \operatorname{NOR}(\overline{R}, \overline{Q_n}) = Q_n, \qquad \overline{Q_{n+1}} = \operatorname{NOR}(\overline{S}, Q_n) = \overline{Q_n}$

- Set operation
 - *R* low, *S* high yields *Q* forced high

 $\overline{Q_{n+1}} = \operatorname{NOR}(S, Q_n) = 0 \Rightarrow Q_{n+1} = 1$

- Reset operation
 - R high, S low yields Q forced low

 $Q_{n+1} = \operatorname{NOR}(R, \overline{Q_n}) = 0$

R	S	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Q_n	$\overline{Q_n}$
0	1	1	0
1	0	0	1
1	1	Not used	Not used

Complementary SR flip flop using NAND gates is also possible, etc.

Clocked SR Flip Flop

- Inverter latch with clocked set/ reset inputs
 - Clock, ϕ , form AND functions with respective trigger inputs, S and R •
 - Trigger inputs ignored when clock is low, $\bar{\phi}$
 - Clock and trigger inputs use NMOS transistors only
- Requirements for set operation
 - Q5-Q6 sink enough current to pull \bar{Q} below threshold of Q3-Q4 inverter
 - Set signal remains high long enough to cause regeneration to take over the switching process
- Requirements for reset (parallels set due to symmetry) •
 - Q7-Q8 sink ... *Q* below threshold... Q1-Q2 inverter
 - Reset signal remains high...

Superior functionality at same transistor count as SR flip flop: clock low enforces storage mode.

Set Operation on Clocked SR Flip Flop: Part I

• Set operation on clocked SR flip flop in reset storage mode

$$v_{\phi} = V_{DD}, \quad v_{S} = V_{DD}, \quad v_{R} = 0 \text{ V}$$

$$Q_{n} = 0, \quad \overline{Q_{n}} = 1, \quad \phi S\overline{R} = 1$$

$$\Rightarrow Q_{n+1} = 1, \quad \overline{Q_{n+1}} = 0$$
• Part I: Q5-Q6 must pull $\overline{Q_{n+1}}$ down past midpoint...

$$v_{Q} = 0, \quad v_{\overline{Q}} < \frac{V_{DD}}{2} \Rightarrow I_{D2} < I_{D5} = I_{D6} \approx I_{Deq} \Big|_{\frac{1}{2} (\frac{W}{L})_{5,6}}$$

$$I_{D2} = I_{Deq} = i_{Dx} \Big(|V_{GS}| = V_{DD}, |V_{DS}| = \frac{V_{DD}}{2} \Big)$$

$$i_{Dx} = k'_{x} \Big(\frac{W}{L} \Big)_{x} \Big[V_{DD} - V_{tx} - \frac{1}{2} \Big(\frac{V_{DD}}{2} \Big) \Big] \Big(\frac{V_{DD}}{2} \Big)$$

$$\Rightarrow \Big(\frac{W}{L} \Big)_{5,6} > 2 \frac{k'_{p}}{k'_{n}} \Big(\frac{W}{L} \Big)_{2}$$

• Part II: ... and hold at least until latch responds

 V_{DD}

So-

 Q_2

 V_{DD} 0

 V_{DD}

1 Deq

 $Q_{\rm eq}$

W/L =

Set Operation on Clocked SR Flip Flop: Part II

• Set operation on clocked SR flip flop in reset storage mode $v_{\phi} = V_{DD}$, $v_S = V_{DD}$, $v_R = 0$ V

$$Q_n = 0, \quad \overline{Q_n} = 1, \quad \frac{\phi S\overline{R}}{Q_{n+1}} = 1$$

$$\Rightarrow Q_{n+1} = 1, \quad \overline{Q_{n+1}} = 0$$

- Part I: Q5-Q6 must pull $\overline{Q_{n+1}}$ down past midpoint...
- Part II: ... and hold at least until latch responds
 - Flip...

$$v_Q = 0$$
, $v_{\bar{Q}} = V_{DD} \rightarrow \frac{V_{DD}}{2} \Rightarrow t_{PHL}(\text{Qeq}-\text{Q2}) = \frac{CV_{DD}}{2I_{PHD}}$

• ... flop

$$v_{\bar{Q}} \approx 0$$
, $v_Q = V_{DD} \rightarrow \frac{V_{DD}}{2} \Rightarrow t_{PLH}(Q3-Q4) = \frac{CV_{DD}}{2I_{PLH}}$

Reset operation parallels that of set operation.

BREAK

6T Static Random Access Memory (SRAM) Cell

- Simplified implementation of the CMOS clocked SR flip flop
 - CMOS inverter latch
 - Q1-Q2 and Q3-Q4
 - Set/ reset and output are all provided through clocked access transistors (cf. pass transistor logic)
 - Q5 and Q6
- Storage mode, $\bar{\phi}$
- Reset operation, $\phi \bar{S}R$
- Set operation, $\phi S \overline{R}$
- Read operation, ϕ
 - Must be controlled to not accidentally set or reset the 6T cell

This is the industry standard volatile static memory cell.

1T Dynamic RAM (DRAM) Cell

- One single access transistor
- Storage capacitor
 - Logic 0: not charged
 - Logic 1: charged
- Read operation exchanges charges with bit line
- Leakage demands periodic refresh
- Word line boost required to charge storage capacitor to full supply voltage

 $v_{OV} = v_W - v_{C_S} - V_{tn} \Rightarrow v_W = V_{DD} + V_{tn}$

1T is dynamic, requiring periodic refresh on millisecond time scale.

Memory Chip Column-Row-Block Organisation

- Memory organisation needed to (time/ energy) efficiently read or write data in a controlled fashion
 - Matrix minimizes bit and word line RC time constant
 - Bits stored in columns
 - Words in rows (across columns)
 - Several blocks required for large memories
- Memory peripheral circuits
 - Row and column address decoders, built from combinatorial logic circuits
 - Precharge and equalisation for differential bit line preconditioning
 - Sense amplifiers read data from memory cells
 - Drivers write data into memory cells

6T SRAM Cells in a Memory Block

- Row address lets row decoder activate all access transistors in a specific row
- Column address lets column decoder operate on a pair of complementary bit lines
 - Read to or write from I/O data bus

Memory cycle time is on nanosecond time scale, limited by word line RC and sense response.

6T SRAM Cell Operation Conditions

- Read and write functionality through access transistors
- Read operation must not shift the logic level more than a threshold voltage from stored value
- Write operation must toggle the logic level to within a threshold voltage of new value

6T SRAM Cell: Writing a Logic 0 Over a Logic 1

How to boost small differential signal from memory cell to logic levels?

Clocked Latch as a Differential Sense Amplifier

Dummy Cells for Differential DRAM Operation

- DRAM cells yield single ended output, not compatible with differential sense amplifier/ driver
- Dummy cells at memory block edge used to simulate differential characteristics

MOS Differential Amplifier as a Sense Amplifier

