2018-10-16

F13 – Digital Logic

Outline

- Digital logic
- CMOS complementary switches
- CMOS logic gate circuits
- CMOS inverter
 - Static operation
 - Dynamic operation
 - Power dissipation
 - Power-delay product
 - Energy-delay product

Reading Guide Sedra/Smith 7ed int

- Chapter 15.1-4, 15.6
- (Chapter 15.5 (transistor sizing))
- (Chapter 16 (logic families))

Problems

Sedra/Smith 7ed int

• P15.3, 15.4, 15.33, 15.34, 15.57, 15.60

Digital Logic Families

- Complementary MOS (CMOS) digital logic
 - Complementary common source devices
 - Low static power dissipation but high dynamic
- Current-steering logic (CSL)/ emitter coupled logic (ECL)
 - Differential pair + followers for level shift
 - Naturally produces complementary output variables
 - Fast operation and approximately constant supply current
- Pass transistor logic (PTL) and complementary pass transistor logic (CPL)
 - PTL: CMOS transmission gates, typically requiring some complementary input variables
 - CPL: Zero threshold NMOS (or PMOS) only, demanding complementary input variables
 - Slow operation, susceptible to noise, and poor 1 logic level, but can be area efficient
- ... and many other digital logic families

Every logic family has its pros and cons, but CMOS logic is economic, versatile, and low static power.

 V_{DD}

 v_I

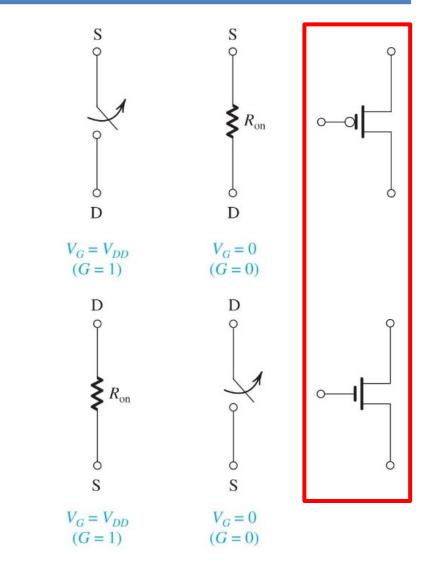
PU

PD

Vo

 $+ V_{CC}$

VOIO


 R_{C2}

CMOS: Complementary MOS Devices Operated as Switches

G 0-----

D

- Switch level transistor models utilised in function design
- CMOS logic levels
 - Logic 0: Ground level (low), i.e. $0 \leftrightarrow V_{0} = 0$ V
 - Logic 1: Positive supply (high), i.e. $1 \leftrightarrow V_{"1"} = V_{DD}$
- PMOS w/ source connected towards supply: active low
 - Gate high: cut off, i.e. open switch
 - Gate low: saturation, i.e. closed switch, with a small resistance
- NMOS w/ source connected towards ground: active high
 - Gate high: saturation, i.e. closed switch, with a small resistance
 - Gate low: cut off, i.e. open switch

NOT Gate a.k.a. Inverter

X

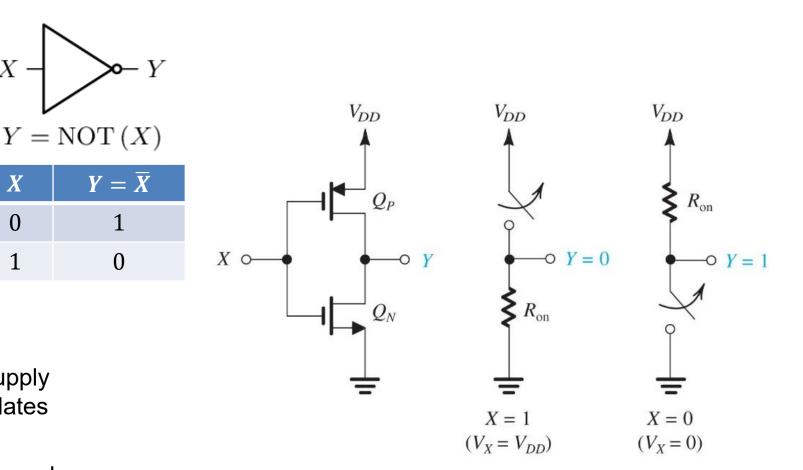
X

0

1

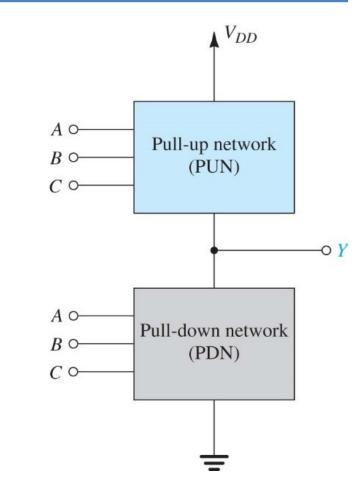
1

0


- Logic (boolean) NOT function
 - Input, X •

 $X \in \{0, 1\}$

Output, Y •


 $Y = \overline{X} = \begin{cases} 1, & X = 0\\ 0, & X = 1 \end{cases}$

- CMOS inverter (i.e. NOT gate) •
 - Pull up transistor QP, $Y = \overline{X}$
 - Connects output towards supply if input is low, otherwise isolates
 - Pull down transistor QN, $\overline{Y} = X$ •
 - Connects output towards ground if input is high, otherwise isolates

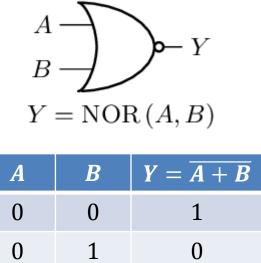
CMOS Logic Gates

Boolean logic requires three basic operations: NOT, IF and AND.

• Input nodes

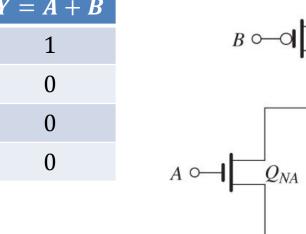
- Gate nodes of various NMOS and PMOS transistors
- Output node
 - Routed either to supply or ground, depending on input levels
- Pull up network (PUN), $Y = f_{PUN}(\overline{A}, \overline{B}, \overline{C}, ...)$
 - PMOS connects output node towards supply for low input
- Pull down network (PDN), $\overline{Y} = f_{PDN}(A, B, C, ...)$
 - NMOS connects output node towards ground for high input
- Complementary PUN and PDN device operation
 - Input variables (*A*, *B*, *C*, ...) connect to both PUN and PDN
 - Per input variable, PUN PMOS does opposite of PDN NMOS

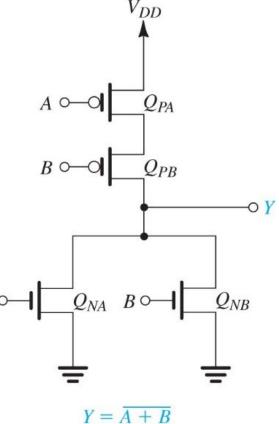
Two Input NOR Gate


1

1

- Logic (boolean) NOT-OR compound function
 - Inputs, {*A*, *B*}
 - $A,B\in\{0,1\}$
 - Output, Y

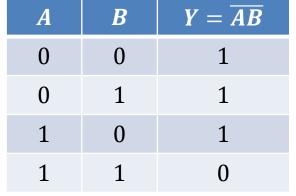

$$Y = \overline{A + B} = \overline{A}\overline{B} = \begin{cases} 1, & (A = 0, B = 0) \\ 0, & \text{otherwise} \end{cases}$$

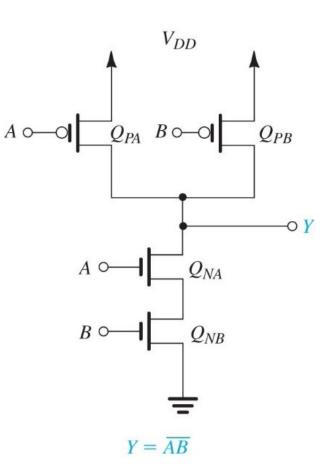

- CMOS NOR gate
 - PUN, $Y = \overline{A}\overline{B}$
 - One series branch with all inputs
 - PDN, $\overline{Y} = A + B$
 - One parallel branch for each input

0

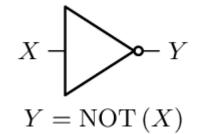
1

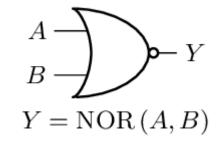
Inclusive OR function, dissimilar from exclusive XOR function.

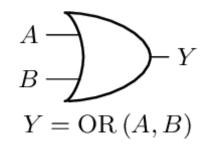

Two Input NAND Gate

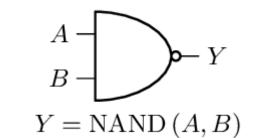

- Logic (boolean) NOT-AND compound function
 - Inputs, {*A*, *B*}
 - $A,B\in\{0,1\}$
 - Output, Y

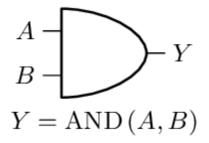
$$Y = \overline{AB} = \overline{A} + \overline{B} = \begin{cases} 0, & (A = 1, B = 1) \\ 1, & \text{otherwise} \end{cases}$$

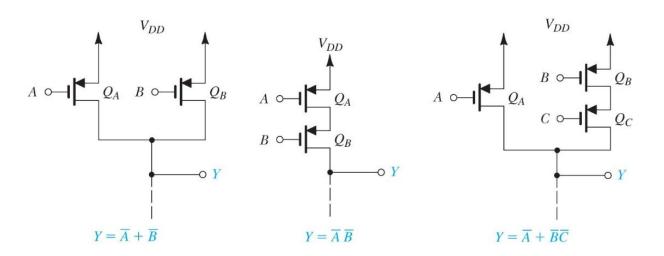

- CMOS NAND gate
 - PUN, $Y = \overline{A} + \overline{B}$
 - One parallel branch for each input
 - PDN, $\overline{Y} = AB$
 - One series branch with all inputs


$$A - \bigcirc Y$$
$$B - \bigcirc Y$$
$$Y = \text{NAND}(A, B)$$




How can OR and AND gates be implemented?





ETIN70 – Modern Electronics: F13 – Digital Logic

CMOS Pull Up Networks (PUNs)

- PUNs consist of active low PMOS transistors only
- PMOS w/ source towards supply
 - Active when gate input is low (0)
 - Not active if gate input is high (1)
- Parallel connection: NAND
 - At least one low yields conductive path towards supply
- Series connection: NOR
 - All, and only all, low yields conductive path towards supply
- Scalable to arbitrary number of devices in series/ parallel branches

CMOS Pull Down Networks (PDNs)

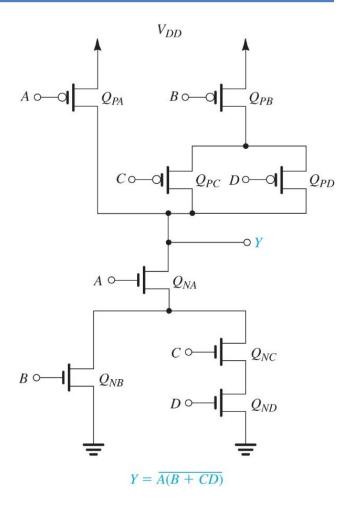
- PDNs consist of active high NMOS transistors only
- NMOS w/ source towards ground
 - Not active if gate input is low (0)
 - Active when gate input is high (1)
- Parallel connection: NOR
 - At least one high yields conductive path towards ground

- Series connection: NAND
 - All, and only all, high yields conductive path towards ground
- Scalable to arbitrary number of devices in series/ parallel branches

Complex Gates: Duality, Boolean Algebra, and De Morgan's Law

- PUN-PDN duality between series and parallel connections
- Basic operators in boolean algebra/ set theory/ digital logic
 - Disjunction/ union/ OR

 $A \lor B \Leftrightarrow A \cup B \Leftrightarrow OR(A, B) \sim max(A, B) = A + B - AB$


Conjunction/ intersection/ AND

 $A \land B \Leftrightarrow A \cap B \Leftrightarrow AND(A, B) \sim min(A, B) = AB$

Negation/ complement/ NOT

 $\neg \Leftrightarrow \bar{X} \Leftrightarrow \text{NOT}(X) \sim 1 - X$

- De Morgan's law
 - Negation of disjunction is equivalent to conjunction of negations, and vice versa $\neg (A \lor B) = (\neg A) \land (\neg B) \Leftrightarrow \overline{A \cup B} = \overline{A} \cap \overline{B} \Leftrightarrow \overline{A + B} = \overline{A}\overline{B}$ $\neg (A \land B) = (\neg A) \lor (\neg B) \Leftrightarrow \overline{A \cap B} = \overline{A} \cup \overline{B} \Leftrightarrow \overline{AB} = \overline{A} + \overline{B}$

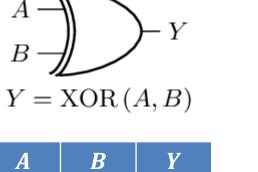
De Morgan's law: "break the line, change the sign".

Synthesis by Duality: Two Input XOR Gate

0

0

1


1

- Logic (boolean) XOR function
 - Inputs, {*A*, *B*}
 - $A,B\in\{0,1\}$
 - Output, Y

$$Y = A\overline{B} + \overline{A}B = \begin{cases} 1, & (A \neq B) \\ 0, & \text{otherwise} \end{cases}$$

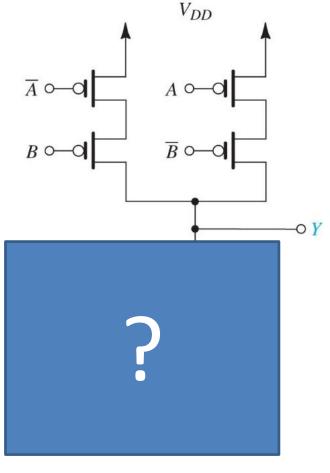
- CMOS XOR gate
 - PUN, $Y = A\overline{B} + \overline{A}B$
 - Parallel branches with series devices
 - PDN
 - Series branch with parallel devices
 - Auxiliary logic
 - Inverters for complemented variables

Two-input inclusive $OR(A, B) \sim max(A, B)$, whereas exclusive $XOR(A, B) \sim mod(A + B, 2)$.

0

1

0

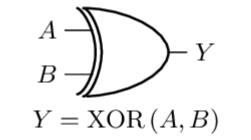

1

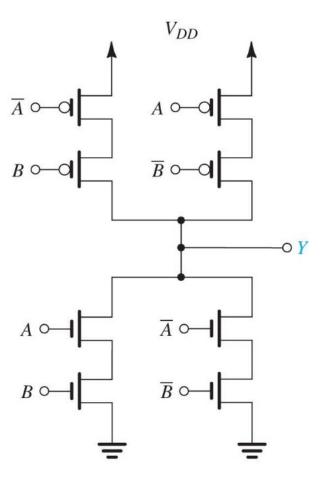
0

1

1

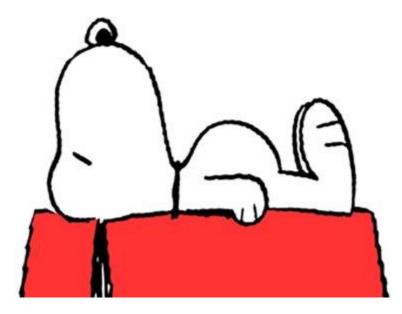
0


Synthesis by Complementary Expressions: Two Input XOR Gate


- Logic (boolean) XOR function
 - Inputs, {*A*, *B*}
 - $A,B\in\{0,1\}$
 - Output, Y

$$Y = A\overline{B} + \overline{A}B = AB + \overline{A}\overline{B} = \begin{cases} 1, & (A \neq B) \\ 0, & \text{otherwise} \end{cases}$$

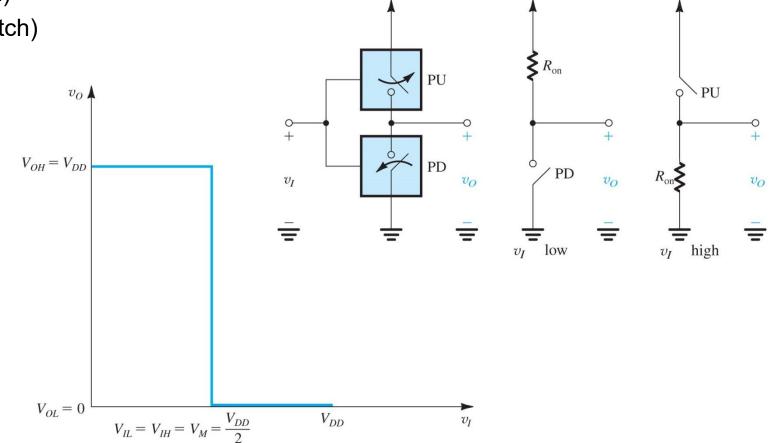
- CMOS XOR gate
 - PUN, $Y = A\overline{B} + \overline{A}B$
 - Parallel branches with series devices
 - PDN, $\bar{Y} = AB + \bar{A}\bar{B}$
 - Parallel branches with series devices
 - Auxiliary logic
 - Inverters for complemented variables



A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

PDN is not the dual of the PUN; gate design is not unique.

BREAK


CMOS Inverter

- Two complementary MOS switches between ground and supply
 - High off resistance (open switch)
 - Small on resistance (closed switch)
- Ideal characteristics
 - Full range output swing
 - $0 = V_{OL} < v_O < V_{OH} = V_{DD}$
 - Discrete switch at midpoint

$$V_{IL} = V_{IH} = V_M = \frac{V_{DD}}{2}$$

- High output for low input level $v_I < V_{IL} \Rightarrow v_O = V_{OH} = V_{DD}$
- Low output for high input level

 $v_I > V_{IH} \Rightarrow v_O = V_{OL} = 0$

 V_{DD}

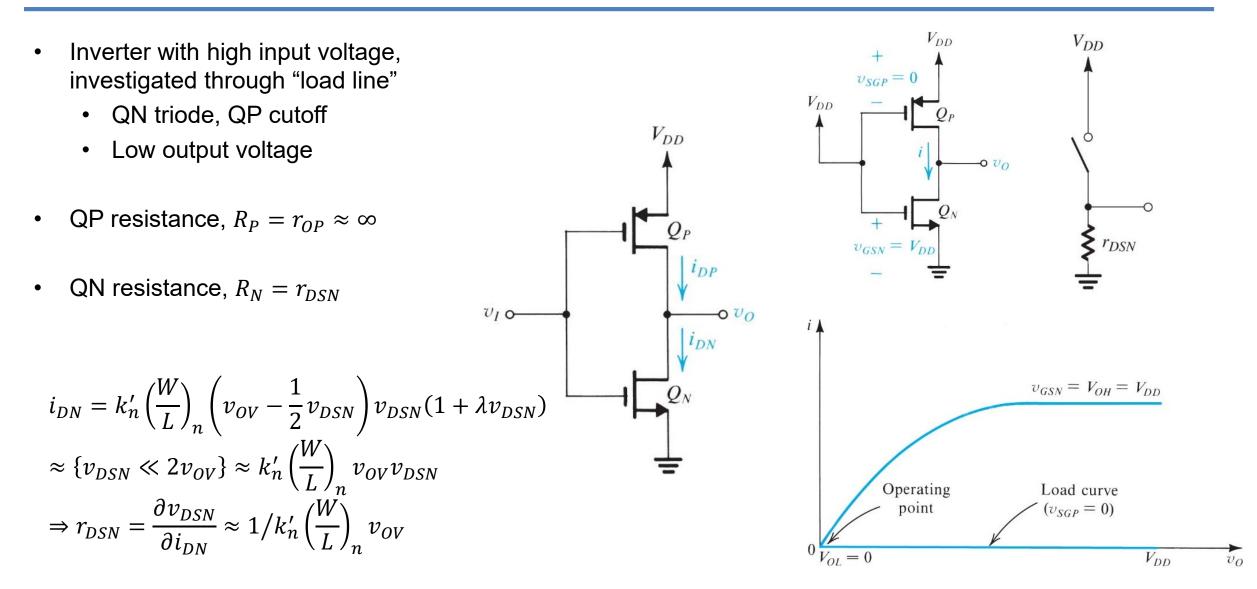
 V_{DD}

 V_{DD}

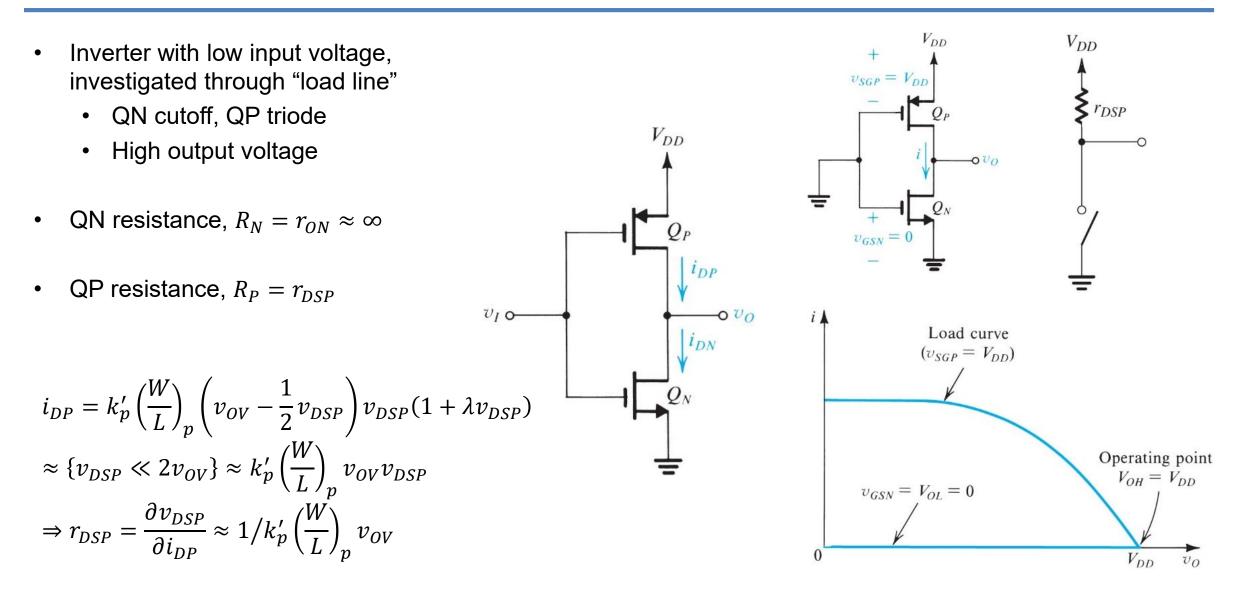
Inverter VTC

 V_{DD} Simplified characteristics VOI Reduced output range • Off state leakage R_{on} Midpoint smeared • UN Output resistance due to MOSFET vo channel length modulation PUN triode operation just below V_{OH} PD Vo output midpoint PDN triode operation just above output midpoint low UI UI Noise margins (to intrinsic switching region) ٠ High output state • $NM_H = V_{OH} - V_{IH}$ Low output state ٠ $M_{H'}$ $\prec NM_L >$ $NM_L = V_{IL} - V_{OL}$ V_{OL} 0 V_{IL} V_{IH} V_{OH} V_{OL} v_I

Vo

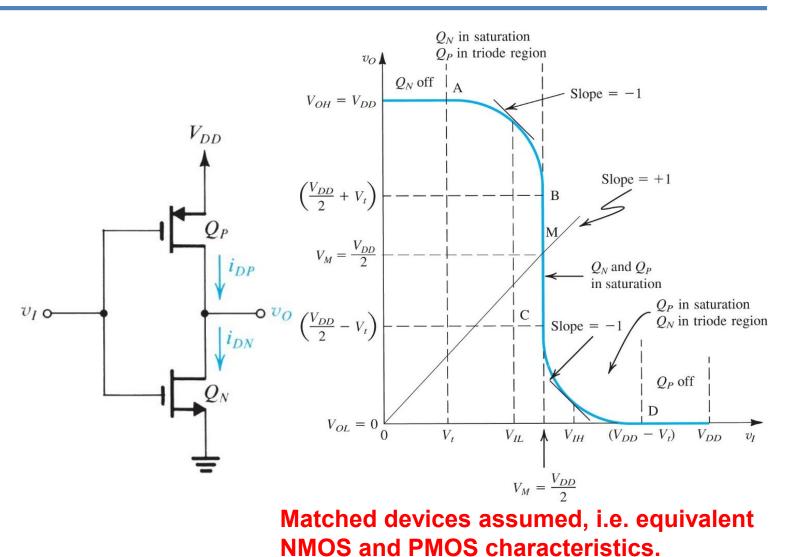

 V_{DD}

0

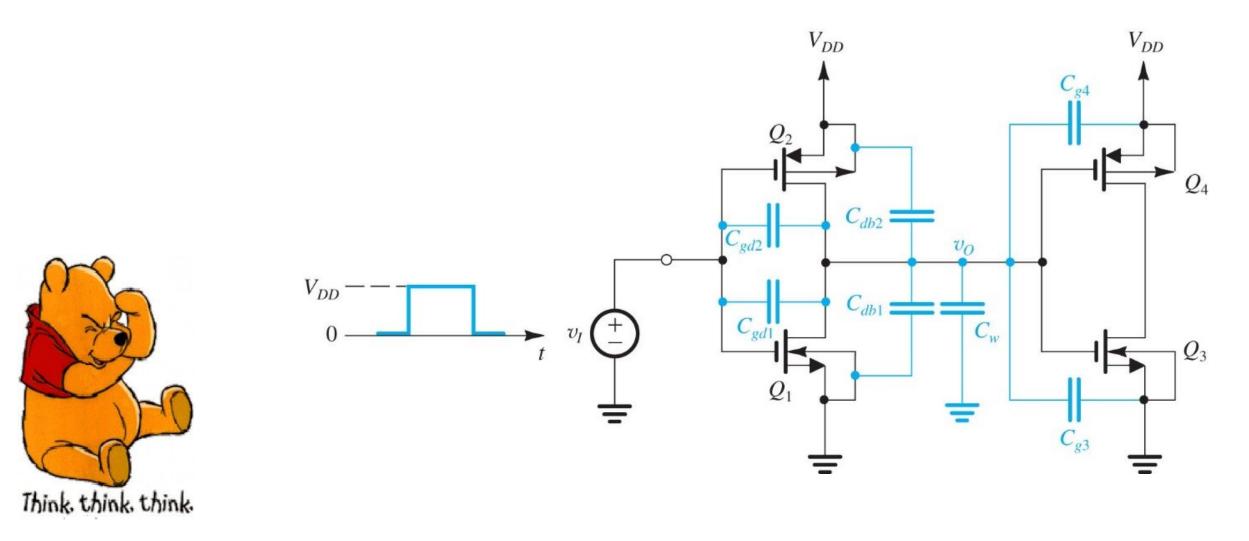

\ PU

high

CMOS Inverter: High Input

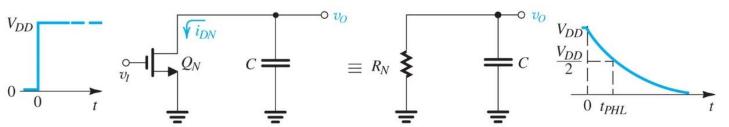


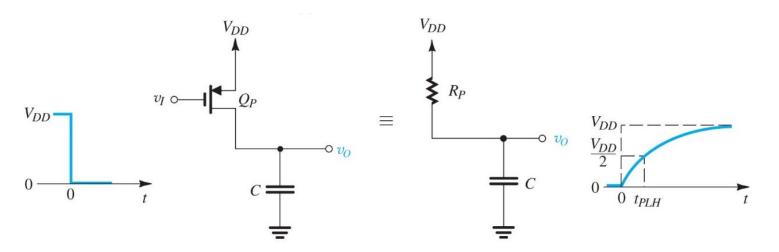
CMOS Inverter: Low Input



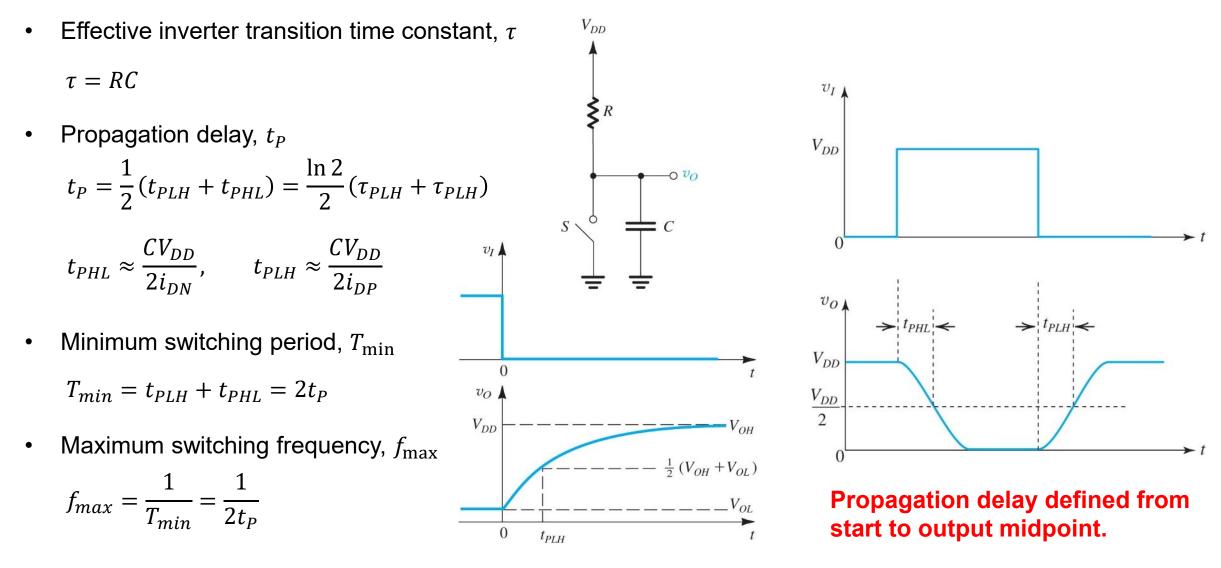
Detailed CMOS Inverter VTC for Matched Devices

- Voltage transfer characteristics for input starting low, going high
 - Low input/ high output
 - QN cutoff, QP zero bias
 - Passing threshold for QN
 - QN saturation, QP triode
 - Steep drop at midpoint
 - QN and QP saturation, (neglecting channel length modulation)
 - Passing midpoint
 - QN triode, QP saturation
 - Passing threshold for QP
 - QN zero bias, QP cutoff
 - High input/ low output


What is the effect of circuit capacitance on the inverter step response?


ETIN70 – Modern Electronics: F13 – Digital Logic

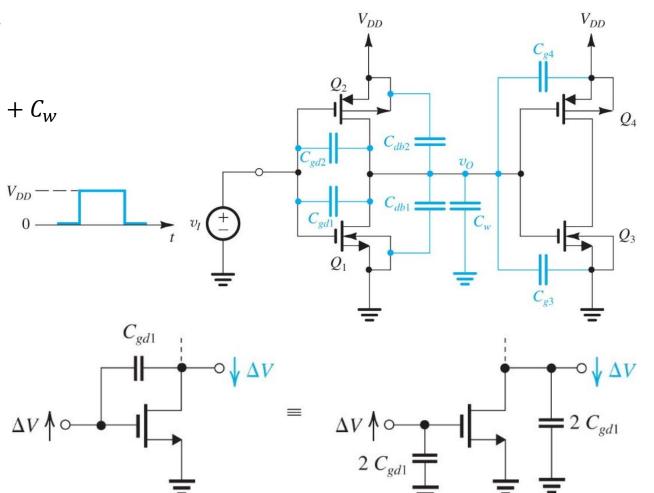
Propagation Delay: Equivalent Circuits


- Effective capacitance at output node, *C*, and equivalent MOSFET resistance, *R*, sourcing/ sinking current *I*
- Input low, going high
 - Output capacitance discharges from high to low through QN
- Input high, going low
 - Output capacitance charges from low to high through QP
- Generalised step response of single time constant (STC) network

$$I\Delta t = \Delta Q = C\Delta V$$
$$y(t) = Y_{\infty} - (Y_{\infty} - Y_{0+}) \exp\left(-\frac{t}{\tau}\right), \qquad \tau = RC$$

Propagation Delay and Maximum Switching Frequency

Equivalent Capacitance at Inverter Output


- Large signal equivalent capacitance at output, *C*
 - Contributions from input and load inverter

 $C \approx 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2} + C_{g3} + C_{g4} + C_w$

- Gate-drain capacitance of input stage, C_{gdx}
 - Miller feedback

 $\Delta v_O = K \Delta v_I = -1 \Delta v_I \Rightarrow (1 - K) = 2$

- Drain-body capacitance of input stage, C_{dbx}
- Wiring capacitance between stages, C_w
- Gate capacitance of load stage, C_{gx}

Static and Dynamic Power Dissipation

- V_{DD} V_{DD} R_{PU} UIO CDN R_{PD} Ipeak 0 $\frac{V_{DD}}{2}$ Vin VDD UI $V_{DD} - |V_{tp}|$
- Static power dissipation, *P*_{static}
 - No connection between supply and ground •
 - No (or quite small) static power dissipation •

 $P_{static} = V_{DD} i_{static} \approx 0$

- Dynamic power dissipation, $P_D = P_{dynamic} + P_{leakage}$ ٠
 - Repeated output node charge/ discharge cycles through PUN/ PDN equivalent resistances

$$P_{dynamic} = f(E_{PLH} + E_{PHL}) = fCV_{DD}^2 = f\left(\frac{1}{2}CV_{DD}^2 + \frac{1}{2}CV_{DD}^2\right)$$

Small direct leakage current from supply to • ground through PUN and PDN, peaking at midpoint (often negligible)

$$P_{leakage} = f \int_0^T V_{DD} i_{leakage}(t) \, \partial t \ll P_{dyn}, \qquad T = \frac{1}{f}$$

Power Delay Product and Energy Delay Product

- V_{DD} UII Dynamic power, P_D , of inverter operated at frequency, f $P_D \approx f C V_{DD}^2$ 90%- $\frac{1}{2}(V_{OL} + V_{OK})$ 50% Propagation delay, t_P , at frequency, f 10% $t_P \approx \frac{1}{2f}$ VOL Power delay product, PDP, is a logic technology ٠ \rightarrow t_{PLH} figure of merit (should be small) VOH 90%- $PDP = R_D t_P \approx \frac{1}{2} C V_{DD}^2$ $\frac{1}{2}(V_{OL} + V_{OH})$ 10% -٠ \rightarrow $\rightarrow t_{TLH} \leftarrow$
- Energy delay product, EDP, is a logic design figure of merit (should be small)

 $EDP = \{energy \times time per transition\} = PDP \times t_P$

Power delay product can be physically interpreted as average energy dissipation per inverter transition.

t_{THI}