2018-10-11

F12 – Output Stages

Outline

- Classification of output stages
 - Class A
 - Class B
 - Class AB
 - Class C
 - Class D
- Operation and power efficiency of class A, B, and AB
- CMOS implementation of class AB output stage
- Power transistors

Reading Guide Sedra/Smith 7ed int

- Chapter 11.1-5 (output stages)
- (Chapter 11.6 (variations))
- Chapter 11.7 (CMOS AB stage)
- (Chapter 11.8-10 (PAs, power devices))

Problems

Sedra/Smith 7ed int

• P11.2, 11.11, 11.19(a-b), 11.56

Classification of Output Stages

- Output stages are primarily classified by their periodic active angle, θ
- Linear and "quasi-linear complementary" amplifiers
 - Class A: $\theta = 360^{\circ}$
 - Class B: $\theta = 180^{\circ}$
 - Class AB: 180° < θ ≪ 360°
- Small angle (tuned resonator) amplifiers
 - Class C: $0^{\circ} < \theta < 180^{\circ}$
- Pulse width modulated (switching) amplifiers
 - Class D: $\theta = 360^{\circ}$ non-linear
- ... and more sophisticated classes (E, F, G, H, etc.)

Source(/ Emitter) Follower as an Output Stage

- Common drain(/ collector) a.k.a. source(/ emitter) follower
 - High input resistance

 $R_i = \infty$

Voltage buffer

$$A_{vo} \approx \frac{1}{1+\chi}$$

• Low output resistance

Ideal input/ output resistance for a voltage amplifier, but gain must be provided by previous stages.

Class A

• Common drain(/ emitter), Q1, with active load, Q2

• Balanced supplies $(\pm V_{CC})$ allow load to ground

 $V_{EE} = -V_{CC}$

- Bias/ load should be designed to support rail-to-rail signal operation
 - Positive output: Q1 on
 - Negative output: Q1 off

 $v_{O} = -IR_{L} \leq -V_{CC}$ \Leftrightarrow $R_{L} \geq \frac{V_{CC}}{I}$

Class A: Large Signal Operation

R

- Non-inverting operation centred on • $i_{E1} = I$ and $v_0 = 0$
 - Rail-to-rail operation (neglecting • Q1 and Q2 v_{CEsat})

$$R_L \ge \frac{V_{CC}}{I} \quad \Rightarrow \quad -V_{CC} < v_0 < V_{CC}$$

High output (Q1 on) •

$$v_{O} = V_{CC}, \qquad i_{E1} = 2I$$
$$\Leftrightarrow$$
$$i_{L} = i_{E1} - I = I$$

Low output (Q1 off) •

$$v_{O} = -V_{CC}, \quad i_{E1} = 0$$
$$\Leftrightarrow$$
$$i_{L} = i_{E1} - I = -I$$

Class A: Signal Waveforms

Class A: Power Efficiency

- Power efficiency
 - Ratio of load power, P_L , to supply power, P_S

• Harmonic output assumed

$$v_0 = \hat{V}_0 \sin(\omega t) = \hat{V}_0 \sin\left(\frac{2\pi}{T}t\right)$$

• Load power

$$P_{L} = \frac{v_{O}^{2}}{R_{L}} = \frac{1}{2} \frac{\hat{V}_{O}^{2}}{R_{L}}$$

Supply power

 $P_S = P_{S+} + P_{S-} = 2V_{CC}I$

Power dissipation monotonically reduced with output voltage level, but high quiescent value and low maximum efficiency.

Complementary Emitter(/ Source) Follower as an Output Stage

- Complementary push-pull configuration
 - One transistor active
 - One transistor cutoff

Q1 sources (pushes) load current, Q2 sinks (pulls) load current.

Class B

٠

•

•

Class B: Crossover Distortion

Class B: Power Efficiency

- Power efficiency
 - Ratio of load power, P_L , to supply power, P_S
 - $$\begin{split} \eta &= \frac{P_L}{P_S} = \frac{\pi}{4} \left(\frac{\widehat{V_o}}{V_{CC}} \right) \leq 78.5\% \\ 40\% &< \eta_{typical} < 60\% \end{split}$$
- Harmonic output assumed

$$v_0 = \hat{V}_0 \sin(\omega t) = \hat{V}_0 \sin\left(\frac{2\pi}{T}t\right)$$

• Load power

$$P_{L} = \frac{v_{O}^{2}}{R_{L}} = \frac{1}{2} \frac{\hat{V}_{O}^{2}}{R_{L}}$$

Supply power

$$P_{S} = P_{S+} + P_{S-} = \frac{2}{\pi} \frac{\widehat{V_{o}}}{R_{L}} V_{CC}$$

 $P_D = P_{dissipated} = P_L - P_S = \frac{\widehat{V}_o}{R_I} \left(\frac{2}{\pi} V_{CC} - \frac{1}{2} \widehat{V}_o\right)$ P_D $P_{D\max} = \frac{2V_{CC}^2}{\pi^2 R_{\star}}$ $\eta = 50\%$ PDmax $\eta = 78.5\%$ \hat{V}_o V_{CC} $2V_{CC}$ π

Power dissipation low for low and high output voltage, and quite good maximum efficiency.

Class B: Single Supply

Shifted positive supply

 $V_{CC}' = V_{CC} + V_{EE} = \{V_{EE} = V_{CC}\} = 2V_{CC}$

• Grounded current sink

 $V_{EE}' = -V_{EE} + V_{EE} = 0$

- Capacitively coupled load to ground
 - Separates dc from signal

BREAK

Attractive to eliminate class B conduction threshold; why and how?

ETIN70 – Modern Electronics: F12 – Output Stages

Class AB

Class AB: Quiescent Current and Large Signal Operation

• Input bias generates quiescent current

$$i_N \Big|_{v_0=0} = i_P \Big|_{v_0=0} = I_Q = I_S \exp\left(\frac{V_{BB}}{2V_T}\right)$$

- Positive output voltage (negative just opposite)
 - Output follows input

$$v_O = v_I + \frac{V_{BB}}{2} - v_{BEN}, \qquad i_L = \frac{v_O}{R_L}$$

 Incremental load current supplied by QN, which requires increased QN base drive

$$i_N = i_P + i_L, \qquad v_{BEN} + v_{EBP} = V_{BB}$$

• Product of device currents remain constant

$$i_N i_P = I_Q^2 \quad \Rightarrow \quad i_N^2 - i_L i_N - I_Q^2 = 0$$

Biasing the BJT Class AB Input

- Diodes
 - Simple but primitive

- Base-emitter multiplier
 - Design ratio using resistances

$$I_{R} = \frac{V_{BE1}}{R_{1}}$$
$$V_{BB} = I_{R}(R_{1} + R_{2}) = V_{BE1} \left(1 + \frac{R_{2}}{R_{1}}\right)$$

I_{BIAS}

UIO

 $D_1 \mathbf{\nabla}$

 D_2

(Class AB: BJT Variations)

- Input emitter followers
 - Buffers input signal
 - Provides AB biasing
- Compound devices boost performance
 - Darlington configuration
 - Compound PNP

(Protection Circuits)

- Output short circuit protection, protects against too high load current
 - Q5 normally off
 - High current in R_{E1} turns Q5 on
 - Q5 on turns Q1 off
- Thermal shutdown, protects chip against meltdown
 - Q2 normally off
 - Z1 positive temperature coefficient
 - Q1 negative temperature coefficient
 - High temp turns Q2 on
 - Q2 on robs bias from another stage

Protect the amplifier from the user.

Class AB: Classical CMOS Configuration

- Complementary source follower with diode connected input devices
 - Equivalent to BJT AB with diode bias
 - Voltage buffer
 - Low output resistance
 - Limits to the output swing
 - QN and QP overdrive voltages
 - Input circuit active load overdrive voltage
 - Bias current source overdrive voltage

 $-V_{SS} + V_{OVI} + |V_{tp}| + |v_{OVP}| < v_0 < V_{DD} - V_{OVB} - V_{tn} - v_{OVN}$

• Quiescent current due to input bias

$$i_{DN}\Big|_{v_0=0} = i_{DP}\Big|_{v_0=0} = I_Q = I_{BIAS} \frac{(W/L)_n}{(W/L)_1}$$

Class AB: Wide Swing CMOS Configuration

- Complementary push-pull common source
 - Provides high voltage gain, as compared to follower
 - Moderately high output impedance

 $R_o = r_{on} || r_{op}$

• Output swing improved to within an overdrive voltage from the supplies

 $-V_{SS} + v_{OVN} < v_O < V_{DD} - v_{OVP}$

Output resistance can be improved by feedback.

Class D: High Efficiency Switching Amplifier

- High efficiency (ideally 100%)
 - Rapid switch between on and off yields only device power dissipation in a brief moment
 - On or off, no simultaneous voltage and current

 $P_L = v_L i_L \approx V_S I_S = P_S$

- Transmitter
 - Pulse width modulation (PWM) of signal at a high frequency w.r.t. signal frequency
- Receiver
 - Demodulation by low-pass filtering (moving average)

Power dissipation is high when there is current and voltage simultaneously.

Is it possible to build power amplifiers (PAs) from "normal" transistors?

(Power Transistors)

- High current requires large device: low frequency bandwidth
- High thermal dissipation: temperature coefficients and heat sinks
- High electric fields: velocity saturation

