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Overview

• Delta-Sigma Toolbox – some of the key functions

• 2nd-order DT modulator

Example of DT ΔΣ modulator

Advanced AD/DA Converters 3

synthesizeNTF

synthesizeNTF finds an NTF with specified order and out-of-band 
gain (H_inf), having: 1) optimized zeros (if desired), and  2) poles of a 
maximally-flat all-pole transfer function

order = 5;
OSR = 64;
opt = 1;                                % optimized zeros
H_inf = 1.5;                          % defaults to 1.5
H = synthesizeNTF(order, OSR, opt, H_inf);
plotPZ(H);
f = linspace(0, 0.5, 1000);
z = exp(2i*pi*f);
plot(f, dbv(evalTF(H,z)));
sigma_H = dbv(rmsGain(H, 0, 0.5/OSR)); Assuming                           , 

we obtain: 
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synthesizeNTF – II 

This choice of poles is convenient when CIFB or CRFB topologies are 
used with a single feed-in, the STF has the same frequency response as 
the all-pole transfer function created by the poles of the NTF

The NTF performance is primarily determined by zero locations and out-
of-band gain, while pole locations are of secondary importance (since 
the denominator is basically constant in-band) – this is of course less 
true if the OSR is low, since in this case the -3dB cutoff frequency of the 
denominator gets closer to the passband (e.g., see the plot below for a 
5th-order modulator with                and OSR=12)1.5H
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synthesizeNTF – III 

Another limitation is when        is close to unity and zeros are optimized. 
With a low value of         the poles of H converge to z=1. If all zeros of H 
also are at z=1,        approaches 1 and there is no problem; however, if the 
zeros are optimal,        does not converge to 1 any more – this problems 
are due to the fact that poles and zeros are optimized separately (zeros 
taken from previous table), and not taking each other into account

If         is close to 1 or OSR is low use synthesizeChebyshevNTF
still not optimal, but better than the standard synthesizeNTF
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Some theory

Take P(z) = nth-order polynomial, with             maximally flat around ω=0

P(z) will be the denominator of the NTF

The coefficients of P(z) are real  
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Maximally flat around z=1  
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If =0 P is constant (very flat!); a larger     yields a lowpass function 
with increasing sharpness; must be positive, otherwise P(z) has a 
decreasing magnitude when moving away from z=1 (the opposite of 
what we want); taking P(1)=1 we obtain

( ) ( )
( )

( ) ( )
( )

2 21 11 1
n n n

n n

z a z z
P z P a

z z z
− − + −⎛ ⎞ = + =⎜ ⎟

⎝ ⎠ − −

a a
a

Example of DT ΔΣ modulator

Advanced AD/DA Converters 7

Some theory – II 

The roots of                               are the poles (and their inverse) of the 
desired NTF  
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The product of the two roots of each equation is 1 one root is inside 
the unit circle, the other outside collecting all roots inside the circle 
yields the poles of the desired NTF
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Thus, the roots are given by the n complex quadratic equations
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simulateDSM

simulateDSM time-domain simulations of the modulator found with 
synthesizeNTF, assuming that STF is unity

OSR = 64;
nLev = 3;       % number of levels in the quantizer
Nfft = 2^13;
tone_bin = 57;
t = [0:Nfft-1];
u = 0.5*(nLev-1)*sin(2*pi*tone_bin/Nfft*t);

% nLev-1 = max signal
% 0.5*(nLev-1) = -6dBFS

v = simulateDSM(u, H, nLev);
n = 1:350;
stairs(t(n), u(n), 'r'); 
hold on;
stairs(t(n), v(n), 'b'); 

Example of DT ΔΣ modulator
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simulateSNR

calculateSNR;

simulateSNR the amplitude of the input signal is swept 
(however, this function does seem to have problems!) 

OSR = 64;
nLev = 3;
amp = [-130:5:-20  -17:2:-1];
snr = simulateSNR(H, OSR, amp, [], nLev);
plot(amp, snr, '-b', amp, snr, 'db');
[pk_snr pk_amp] = peakSNR(snr, amp)
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realizeNTF and associated functions

The synthesized NTF (and STF) are mapped here to a CRFB modulator 
with realizeNTF (synthesizeNTF returns STF=1 – setting all bi except b1
to zero, we obtain a maximally-flat all-pole STF, see here below) 

H = synthesizeNTF(5, 64, 1);
form = 'CRFB';
[a, g, b, c] = realizeNTF(H, form);
b(2:end)=0;   % maximally flat STF
% stuffABCD to calculate NTF/STF from
% generic a-b-g-c coefficients and given topology

ABCD = stuffABCD(a, g, b, c, form);
[Ha Ga] = calculateTF(ABCD);
% Ha = NTF, Ga = STF;

f = linspace(0, 0.5, 10000);
z = exp(2i*pi*f);
magHa = dbv(evalTF(Ha,z));
magGa = dbv(evalTF(Ga,z));
plot(f, magHa, 'b', f, magGa, 'm', 'Linewidth', 1)
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Scaling of dynamic range

realizeNTF returns unscaled coefficients NTF and STF are ok, but 
there is no control of the internal states (i.e. integrator outputs) 
dynamic range scaling is a must – this is an issue common to all active 
filter implementations!

Scaling is accomplished by dividing the admittance of all input branches 
of a given integrator by a factor k, and multiplying with the same factor 
the admittance of all output branches of the same integrator – in this 
way, the rest of the circuit is unaffected, and so are the transfer functions
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scaleABCD 

scaleABCD 1) determines maximum stable input amplitude (umax) 
and maximum value for each modulator state for inputs up to umax; 2) 
dynamic range scaling is applied maximum value of each state does 
not exceed the specified xLim (remember: 0dBFS = nLev – 1) 

mapABCD (inverse of stuffABCD) maps the results in terms of 
coefficients for the desired topology

nLev = 3; xLim = 0.9; f0 = 0;
[ABCDs umax] = scaleABCD(ABCD, nLev, f0, xLim);
[a g b c] = mapABCD(ABCDs, form); 

Example of DT ΔΣ modulator
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Example of 2nd-order modulator

Low-speed modulator, e.g. for on-chip calibration engine; fb=1kHz and 
fs=1MHz  OSR=500, 1-bit DAC  SQNR ≈ 120dB  SNR in excess of 
100dB possible                                                                                              
We assume that VDD is used as reference voltage (disregard supply noise)

We start selecting the standard CIFB topology
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Code

a =  0.2653,    0.2212

b =  0.2653,     0,         0

c =  0.3185,    5.5874   (c2 is not important in a single-bit quantizer)

Rounding 

a1 =  1/4,   a2 = 1/4,   b1 =  1/4,   c1 =  1/3

Effect of rounding: peak NTF=2.25, peak SQNR=115dB

From simulations, effective quantizer gain (including c2) is approx. 16/3 

H = synthesizeNTF(2, 500, 0, 2);            %out-of-band NTF peak gain = 2
form = 'CIFB';
[a, g, b, c] = realizeNTF(H, form);
b(2:end)=0; 
ABCD = stuffABCD(a, g, b, c, form);
[ABCDs umax] = scaleABCD(ABCD);    % default:  xLim=1, nLev=2
[a g b c] = mapABCD(ABCDs, form); 

Example of DT ΔΣ modulator
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Code and signal denormalization 

umax = 0.966  (normalized to Vref=VDD)  almost rail-to-rail input 
dynamic range

The toolbox assumes that the input of a binary modulator is between -1 
and +1; the same for the integrator states after dynamic range scaling –
everything is of course unit-less

In the following example, the full-scale input is 3Vpp, while the full-scale
in the toolbox is 2pp. Let us assume that the amplifier supports a 
differential swing with the same numerical range as the toolbox, i.e. 2Vpp, 
and that the digital signal vd in the circuit is interpreted as either 0 or 1 
(corresponding to open or closed switch) 

( )
2

1
1 3

zNTF z
z

⎛ ⎞−= ⎜ ⎟−⎝ ⎠

a = [1/4 1/4];
b = [1/4 0 0];
c = [1/3 1];
ABCD = stuffABCD(a, g, b, c, form);
k = 16/3;
NTF = calculateTF(ABCD, k);
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Equations
The relationship between state variables (u, x1, x2, v) and circuit 
variables (vin, vx1, vx2, vd) becomes:

[ ] [ ]1 1 1V                   1 1 1 1xv x= ⋅ ⇒ − → −

[ ] [ ]3scale factor 1.5V  1 1 3 0
2in cm
Vv u v u= ⋅ + = + ⇒ − →

[ ] [ ]1V                      1 1 1 0
2d

vv += ⇒ − →

state circuit

Example of DT ΔΣ modulator

1 1 xx v→1.5   
1.5

invu −→ 2 1dv v→ −

Thus, the DT circuit is retrieved from the normalized model by performing 
the following substitutions:
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Equations

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
1 11
4 4

x n x n bu n a v n x n u n v n+ = + − = + −

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
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in in
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( ) ( ) ( ) ( )11
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2 2

1 2 2 dd
x x in d

CVCv n v n v n v n
C C
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Therefore, the 1st integrator equation

becomes

On the other hand, the SC circuit above approx. yields (more on this soon)
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1 1 xx v→

1.5   
1.5

invu −→

2 1dv v→ −
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Capacitance ratios

Since Vdd=3V, we obtain the capacitance ratio              

Notice that input capacitor and feedback capacitor are shared, i.e. are 
the same component

This is not true for the second integrator – the same procedure yields the 
ratios as in the figure below 
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Signal – first integrator

During ph1, Vin is transferred, inverted and 
without delay, to the bottom output through 
the bottom C1

During ph2, Vin is loaded onto the top C1, 
and then transferred, non-inverted, to the 
top output through the top C1 during next 
ph1 (i.e., delayed by 1 clock cycle)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 12 2
1, 1, 1, 1

1 1 1, 2
1

12 2 1
1, 1, 1,

1 1

1 1       1   
1  
11            1

x top x top in x top in
x diff

in
x bot x bot in x bot in

C Cv n v n v n V z z V
C C V C z
C C V C zv n v n v n V z V
C C

− −
−

−
−

⎫= − + − → − = ⎪ +⎪→ =⎬ −⎪= − − → − =−
⎪⎭

This is the bilinear (trapezoidal) integration method mapping CT  to DT 
half delaying (Euler forward), half non-delaying (Euler backward) 

better than either Euler methods 

The transfer function from input to differential output becomes
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Noise – I 

Assuming the opamp noise negligible, the input-referred noise of the first 
integrator is 

2
1

1

B
n

k Tv
C

=

Why? During ph1, a noise voltage       is                                                       
loaded on top C1, while a noise voltage                                                    
of        and the signal      are loaded on                                                         
bottom C1; during ph2 a noise voltage                                                       
and the signal       are loaded on top C1, and the noise voltage         is 
loaded on bottom C1.  Therefore, since all noise voltages are 
uncorrelated, at the integrator output we obtain:

1,n av

1,n bv inv

1,n dv
inv

( ) ( )22 2 2 2 2 2 2
1, 1, 1, 1, 14x in in n a n b n c n d in nv v v v v v v v v= + + + + + = +

Thus, both signal and kT/C noise are multiplied by the same factor, and 
therefore the input referred noise is simply 1nv

1,n cv

Example of DT ΔΣ modulator
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Noise – II 

The kT/C noise is white between DC and Nyquist its in-band power is 
therefore 2

2 1
1

n
n

vv
OSR

′ =

In order to achieve an SNR of 100dB with a full-scale sine input, we must 
have

( ) ( )
2

210 2
12
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1.5 2
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n

V
v V

v
μ′= → ≈

′

If we allocate all noise to the first integrator, and assuming T=300K, we 
obtain

( )
( )

23
2

1 2
1

1.38 10 30010         74
10 500

Bk TV C fF
C OSR V

μ
μ

−⋅ ⋅= → = ≈
⋅ ⋅

from which C2=0.88pF (in reality, we need some margin on these 
values!)
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Noise – III 

Assuming again the opamp noise negligible, the input-referred noise of 
the second integrator is 

2
1 2 2 2 5

4
B B B

n
k T k T k Tv

C C C
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

This noise is shaped by the inverse of the 
transfer function of the first integrator  

Thus, the in-band noise becomes

( )
1

2 1 2
1 1 1

1

21
1 1

C C CzH z
C z z
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− −
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− −

22
2 2 6 22
2 2 23

1

10
3n n n

Cv v v
OSR C
π −⎛ ⎞′ = ≈⎜ ⎟

⎝ ⎠

Thus, totally negligible even if we choose a very small C capacitor, e.g. C 
= 20fF in this case, the minimum value for C is dictated by process 
limitation rather than noise considerations
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Operational amplifier

Classical folded-cascode topology; with 2IB current in the input pair, the 
slew current available at each output is IB; the largest quantity that needs 
to be transferred from C1 to C2 is C1VDD allocating ¼ of ½ clock period 
for slewing, we obtain 

1
18 8 1 83 3 2

0.25 0.5
DD

B clk DD
clk

CVI f CV M f A
T

μ= = = ⋅ ⋅ ⋅ ≈
⋅ ⋅

Thus, 8μA are enough for the whole amplifier
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Operational amplifier – II 

Bandwidth estimation if we allocate 10 time constants τ of linear 
settling in the remaining ¾ of ½ clock period 
since this is the error from the onset of the linear settling, i.e. it is only a 
(small) fraction of the whole step, 100dB of SNR are easily obtainable 

10 87err e dBδ −= ≈−

L

m

C
g

τ
β

≈We have seen that             , where CL is the total capacitance loading 

the opamp output, gm is the transconductance of the input transistor, and 
β is the feedback factor 

2 1 2 1

1 2 1 2

1,                  = 0.5 0.75     =2.3 A     
10L clk m

m

C CC CC T g V
C C C C g

β τ μ= ≈ → ≈ ⋅ ⋅ →
+ +
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DC gain

We know that the NTF begins to degrade if its zeros are moved inside the 
unit circle by approx.            ; the finite gain of the opamp shifts the pole 
of the first integrator by               it would seem that the following DC 
gain A would be adequate:  

OSRπ
( )1 2C AC

1

2

13OSR CA
Cπ
⋅= ≈

This, however, comes from a linear analysis, and neglects non-linear 
errors coming from slewing and non-linear DC gain (if A is linear, a finite 
A does not cause distortion; if there is no slewing, settling errors due to 
finite bandwidth do not cause distortion)                                                   
Upper bound for required DC gain: the settled voltage at the opamp input 
(i.e. in series with the input signal) is            (            in the double-
sampling of the first integrator): this voltage has a signal component 
(which is ok), broadband noise, and distortion: if we assume that it 
consists of only distortion (which is highly pessimistic), the requirement 
that distortion stay below -100dBFS yields 

outV A 2outV A

5 5110         10 1.5        90
2 2

out
in

V V A dB
A A

− −< → < ⋅ → >
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DC gain – II 

In practice, A=60dB (!) should be adequate (from experience), but this 
has to be checked with extensive simulations using the real non-linear 
model of the opamp

Second integrator: we have seen that its noise requirements are much 
relaxed the same is true with respect to DC gain and slew-rate  
this amplifier can be implemented as a scaled-down version of the first 
amplifier, e.g. by a factor 4 (or higher, but the area and power savings 
decrease rapidly)

Example of DT ΔΣ modulator

Advanced AD/DA Converters 27

Latched comparator and clock generator
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Noise budget

Important to find a good balance between all noise source the various 
noise sources are scaled in a way to give the most economical 
implementation e.g. if q-noise is allocated 90% of the noise budget, 
then the capacitor sizes that should satisfy the remaining 10% kT/C 
noise may be quite large excessive area and power consumption

Furthermore, a large q-noise is not desirable q-noise is not really 
random may compromise performance in e.g. hi-fi audio systems, 
since the human ear can detect tones that are 20dB below the total 
noise level! 

A reasonable noise budget is                                                                  
the one on the right  

Example of DT ΔΣ modulator
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More on noise

When OSR is very large, the first integrator dominates the thermal noise 
budget – this is not true for low OSR (wide bandwidth) because the 
integrator gain is low at the high end of the signal band, which means 
that noise is not much attenuated

Example of DT ΔΣ modulator


