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Overview

• Higher-order single-stage modulators

• Stability

• Optimization of NTF zeros 

• Higher-order multi-stage modulators

• Matching issues
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General single-stage DSM

( ) ( ) ( ) ( ) ( )0 1Y z L z U z L z V z= +
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From these equations we obtain:

with

Remember: the reference voltage of the ADC is implicitly assumed to be 
unity in the equation above, and the same for the feedback DAC, which 
is in fact omitted in the schematic
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General single-stage DSM – II 

Conversely, given the desired STF and NTF, we obtain

( ) ( )
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= ( ) ( )1

11L z
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= −

( ) ( ) ( )1            1
NkSTF z z NTF z z− −= = −

L1 must be large in the signal band, to reduce the NTF there L0 must 
also be large to give an STF close to unity  L0 and L1 have their poles 
in the same range; in fact L0 and L1 usually have the same poles, which 
are also the zeros of the NTF; L0 and L1 have in general different zeros

A typical case is when the STF is just a delay, and the NTF is an N-time 
differentiation:

from which 
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Poles and zeros

The N poles common to L0 and L1 lie on the unit circle at z=1                 
N-k zeros of L0 (for N>k) lie at z=0, and k zeros lie at z=∞                                
The zeros of L1 obey the equation

( ) 2
1 1 1 1 cot            1,2,... 1

22 sin1

j i
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j i j i j i j iN N N N

e iz z j i N
Nj ie e e e N

π
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− ⎡ ⎤⎛ ⎞= = = = + = −⎜ ⎟⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎝ ⎠⎣ ⎦− − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

( ) ( )1 21 1   
N j iz e π−− = =

This yields one zero at infinity (for i=0 below), and the rest is given by
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Special case

Important special case: loop filter with single input, and only the difference 
u(n)-v(n) enters the loop 
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Other special case

Important special case: forward path gives L0=L+1, L1 unchanged 
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The input of the loop filter is therefore:

This means that the loop does not contain the signal, but only the filtered 
quantization noise much relaxed demands on linearity!
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Realizability

There must be at least a clock delay in the loop containing L1 and Q 

Otherwise, a given value of y(n) would result in v(n)=y(n)+e(n), and this 
would pass through L1 instantly and change y(n) during the same period 

the first sample of the impulse response of L1(z) must be zero this 
means that

and therefore 
( )1 0L ∞ =

( ) ( ) ( )1

1 1
1

NTF H
L

∞ ≡ ∞ = =
− ∞



Advanced AD/DA Converters Higher-Order ΔΣ Modulators 9

Realizability – II 
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If we assume the NTF to be

( ) 1H ∞ =
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Stability considerations

( ) ( ) ( ) ( )( ) ( )1Y z STF z U z NTF z E z= + −

The linearized model of the modulator would predict that the sole loop 
transfer function L1 would determine the stability properties of the 
modulator – this would neglect the non-linear limitations of the quantizer!

The range of input amplitudes for which the modulator is stable is called 
stable input range, and must be lower or equal to the full range of the first 
feedback DAC

In a higher-order single-bit modulator the stable input range is a few dB 
below the full range of the feedback DAC – this loss is usually the result 
of the non-linear effects of quantizer overload – in fact, the input to the 
quantizer is

which shows that if the input u (filtered by the STF) approaches the edge 
of the quantizer overload, the addition of the filtered q-error may push y
past the overload range; this overload will increase E(z), which will 
aggravate the original overload, and so on in positive-feedback fashion 
To restore a stable operation of the modulator may require a reset, since 
just disconnecting the input may not be enough! 

The STF acts as a pre-filter stability is mainly determined by the NTF 
and by the number of bits in the quantizer

Unfortunately, there are no known necessary and sufficient NTF 
properties ensuring a stable operation!

The known results are either too conservative, or apply to special cases 
with DC inputs

The most widely used criterion for stability is the so-called Lee’s rule:

This is actually neither necessary nor sufficient! (in fact, it does not say 
anything about the maximum input signal!) 

The maximum usually occurs at ω=π (i.e. at Nyquist), since this is 
farthest from the zeros (usually all close to z=1) and closest to the poles; 
an exception can be when high-Q poles exist in the NTF, in which case 
the peak may occur near the highest-Q pole.
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Stability considerations – II 

A 1-bit ΔΣ modulator is likely to be stable if ( ) ( )max 1.5j jNTF e NTF eω ω

ω ∞
≡ <
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More on instability

Replace the quantizer with a linear gain k and additive noise:

( ) ( )( )2

,
 ,            

,
E yv y

k v n sign y n
y y E y

⎡ ⎤⎣ ⎦ ⎡ ⎤= = =⎣ ⎦⎡ ⎤⎣ ⎦

( ) ( )
( )

( ) ( )
1

1 1

1
1 1k

NTF z
NTF z

kL z k k NTF z
= =

− + −

As we have already seen, k can be found through simulations, and is 
given by

Therefore, we can write an improved linear NTF as

The locus of the roots of the denominator, drawn for 0<k<1, predicts the 
stability of the system
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More on stability

This 5th-order modulator unstable for k < 0.547

We can also appreciate what happens by considering the Bode plot of 
the loop gain, kL1(z) – typically, the loop has its poles at or near DC 
high gain at low frequencies, decaying with N·20dB/dec 

k=1 roots are poles of NTF1

k=0 roots are zeros of NTF1

Stability all roots inside the unit circle

( ) ( )
( )

( ) ( )
1

1 1

1
1 1k

NTF z
NTF z

kL z k k NTF z
= =

− + −

Here: root locus of a 5th-order modulator 
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Loop gain – Bode plot 

Loop gain with k=1 conditional stability: if the gain drops sufficiently 
the phase at the 0dB crossing becomes lower than 180 degrees 

The phase is 180 degrees 
for a loop gain of 1.83 
if k = 1/1.83 = 0.547, the 
loop becomes unstable

|v(n)| is fixed in a single-bit 
quantizer reducing k is 
equivalent to increasing |y| 
and hence |u| again, this 
confirms that instability can 
be avoided by limiting the 
input signal

This poles yield two 
pairs of conjugate 
zeros in the NTF
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More on stability

More sophisticated approaches to assess stability have been proposed 
by, among others, Lars Risbo at DTU, now at TI-Denmark

In practice, extensive simulations are unavoidable!

We have already seen in the discussion of MOD2 that (rapidly and 
perhaps strangely) varying input signals can cause instability even if 
their amplitude is low – realistic worst-case input signals must be used 

square wave with the  frequency of the dominant poles of the NTF  
usually well outside the signal band analog pre-filtering may be of 
great help
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Multi-bit stability

Consider a modulator with an M-step quantizer (i.e., with M+1 levels). 
The modulator is guaranteed (proof in book) not to experience overload

for any input  u(n) such that                                    , where 

and

( ) 1
max 2

n
u n M h< + − ( )1

0n
h h n

∞

=

=∑
( ) ( ) ( )1 1h n Z H z Z NTF z− −= ≡⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Example: M=16,                                                           
any input with maximum value below 10 is guaranteed to be stable  
stable for inputs up to 62.5% of the full scale value of 16

Modulators with Nth-order differentiation for NTF and M=2N+1 steps in 
quantizer sufficient condition: stable for arbitrary inputs up to 50% of 
the input range at least:  

( ) ( )31 1 2 31 1 3 3H z z z z z− − − −= − = − + − 1
8h =

( ) ( )1 1 11 1 ...
1 2

N N N
H z z z z− − −⎛ ⎞ ⎛ ⎞

= − = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1
1 ... 2

1 2
NN N

h ⎛ ⎞ ⎛ ⎞
= + + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
( ) 1max 2 2 2 2 2 2

2
N N N

n

Mu n +< + − = + = +
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Multi-bit stability

If M=2N available range for signal is only 2, i.e. 1LSB!

If M=2N+1 available range for signal is 0.5M+2 = 0.5(M+1)+1.5 > 50%

If M=2N+2 available range for signal is over 75%

Extensive simulations show that for N=5 and M > 25 the condition is very 
stringent: slightly higher u(n) causes instability!

Extensive behavioral simulations a must!

Advanced AD/DA Converters Higher-Order ΔΣ Modulators 18

Zero optimization
Spreading zeros on the unit circle (i.e., at finite frequencies) total in-
band noise is reduced

Moving poles closer to zeros reduces the out-of-band NTF 
improved stability

Optimal zero location (assuming poles do not impact):
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Zero optimization example

Example: 5th order, OSR=32, both optimized and with all NTF zeros at DC

1 64
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Zero optimization example – simulation 

Same example: simulation vs. linear model, both k=1 and optimal k=1.72 
(obtained, once again, a posteriori from the simulation data) – one more 
time, the optimal k case matches simulations really well

-6dBFS input, SQNR = 84dB
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Zero optimization example – SQNR

SQNR less erratic than in lower-order modulators constant white 
noise assumption is more valid in higher-order modulators

Input below –40dBFS 7dB higher than expected – see spectrum in 
next slide
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Zero optimization example – SQNR – II  

Low inputs spectrum is quite different from the expected linear 
model not enough! (lower in-band noise, tones around fs/4, notch at fs/2) 
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More on zero optimization
Even-order NTFs: no optimized zeros at DC no perfect noise 
suppression at DC if perfect DC reproduction is required, it is possible 
to place two zeros at DC, and optimize the other ones following the 
same noise-minimization procedure (zeros at DC also help reducing the 
probability of low-frequency idle tones)
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NTF pole optimization

Constraints:

a) The NTF must satisfy the realizability condition

b) The out-of-band NTF gain, and hence the stability of the modulator, 
are largely determined by the NTF poles

c) We assumed that only the NTF zeros are important in-band (i.e., only 
the NTF zeros determine q-noise shaping); furthermore, NTF poles 
are very often STF poles as well the denominator of the NTF 
should be flat in-band!

( ) 1NTF ∞ =

These constraints entail a trade-off in the location of the poles  (i.e., the 
closer they are to the zeros, the better the stability, but q-noise 
suppression becomes less effective)  software tools available (e.g. 
Schreier’s Delta-Sigma toolbox in Matlab)
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Optimization procedure

If software is not available, cookbook recipe:
1) Choose the modulator order based on the desired specifications (see 

SQNR plots in the next few slides)

2) Choose the NTF type – usual choices are highpass transfer functions, 
like Butterworth, inverse Chebyshev, or maximally-flat-delay

3) Place the -3dB cutoff of the NTF slightly above                                    
the edge of the signal band

4) Now you have zeros zi and poles pi of the NTF:

5) Predict the stability of the modulator – for multi-bit quantization, with the 
formula 

and for single-bit with Lee’s rule:

( )
1

N
i

i i

z zH z
z p=

−=
−∏

( ) 1
max 2u n M h≤ + −

( )max 1.5jNTF e ω

ω
<
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Optimization procedure

Since  the maximum value of the NTF on the unit circle usually occurs 
at z=-1 (i.e. ω=ωs/2; even if the peak occurs elsewhere, its value is 
usually close to that at z=-1), Lee’s rule requires 

6) Confirm stability through extensive simulations

7) If stability not good poles must be shifted further away from z=-1, 
while maintaining the flat gain in the signal band – can be achieved 
by reducing the cutoff frequency, which can be shown to reduce the 
peak NTF gain

8) If stability is robust but the SQNR does not reach the predicted 
values, it may be beneficial to make the design more aggressive by 
increasing the cutoff frequency and repeating the stability test; steps 
6-8 are iterated until a satisfactory performance is obtained 

( )
1

11 1.5
1

N
i

i i

zH
p=

+− = <
+∏
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Empirical SQNR limits, 1b quantizer

Curves include the effect of input amplitude reduction to ensure stability 
accurate prediction of the performance of the non-linear modulator 
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Empirical SQNR limits, 2b quantizer

Curves include the effect of input amplitude reduction to ensure stability 
accurate prediction of the performance of the non-linear modulator 
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Empirical SQNR limits, 3b quantizer

Curves include the effect of input amplitude reduction to ensure stability 
accurate prediction of the performance of the non-linear modulator 
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Loop filter architectures – CIFB 

CIFB – cascaded integrators with distributed feedback and distributed inputs

( )
( )

( ) ( )
( )

1
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1 ... 1
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+
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=

+ − + + −
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∑
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1
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Loop filter architectures – CIFB 
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+
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( )

( ) ( ) ( )
( )

( )1
1 1 2

1 11
1 1 ... 1 1

N N

N N
N

z z
NTF z H z

L z D za a z a z z−

− −
= = = ≡

− + − + + − + −

All zeros at z=1 (= DC); the ai coefficients can be found by equating D(z) 
to the denominator of the desired NTF
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Loop filter architectures – CIFB 

( ) ( )
( )

( ) ( )
( )

0 1 2 1

0

1 ... 1
1

N
NL z b b z b z

STF z
L z D z

++ − + + −
= =

−

The bi coefficients can be found by equating the numerator with the 
numerator of the desired STF

Usually, all ai are non-zero because of the needed poles for stable 
operation

The bi, however, can be chosen more freely: e.g., all equal to zero 
except b1 STF = b1/D(z)  (all STF zeros lie at infinity)   
D(z) must be flat in the pass-band

Other possibility: bi=ai, bN+1=1 STF=1, modulator output becomes

( ) ( ) ( ) ( )V z U z H z E z= +
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Loop filter architectures – CIFB 

The input of the ith integrator becomes (with bi=ai) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1

1         
i i i i i i i

i i

W z X z aV z bU z X z a U z H z E z bU z

X z a H z E z
− −

−

= − + = − + +⎡ ⎤⎣ ⎦
= −

Thus, by recursion, the input signal u(n) is not present at the input of any 
integrator the loop processes only the quantization noise lower 
dynamic needed, especially in multi-bit quantizers less extensive 
dynamic range scaling needed more convenient coefficient values!  
Also, non-linearities do not distort the signal, since the signal is not there!  
Advantageous compared to previous choice (i.e, bi=0 for i>1)

Advanced AD/DA Converters Higher-Order ΔΣ Modulators 34

Coefficient scaling for optimal dynamic range

In general, the values of the feedforward/feedback coefficients yielding 
the desired NTF and STF do not guarantee any control on the internal 
modulator states (i.e. integrator outputs), which may exceed the limits 
imposed by the power supply voltage (or, more in general, may cause 
too much distortion) dynamic range scaling is a must – this is an issue 
common to all implementations of active filters!

Below example of 5th-order active-RC elliptic low-pass filter
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Coefficient scaling for optimal dynamic range

Scaling is accomplished by dividing the admittance of all input branches 
of a given integrator by a factor k, and multiplying with the same factor 
the admittance of all output branches of the same integrator – in this 
way, the rest of the circuit is unaffected, and so are the transfer functions
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Complex NTF zeros, CRFB architecture

5th order two pairs of complex zeros CIFB modified into “cascade of 
resonators with distributed feedback”, CRFB (alternating non-delaying 
and delaying integrators), to keep the zeros on the unit circle

1st and 2nd integrators + feedback g1 yields two complex poles in L1 (and 
L0), solutions of ( ) ( )2

12 1p z z g z= − − +

These poles are on the unit circle at frequencies        , with ( )1 1 1            cos 1 2gω ω± = −
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Complex zeros, CRFB architecture
The same is of course true for the 3rd and 4th integrators + feedback g2

If  ( ) 2
1 1 1 1 11,   cos 1 2      gω ω ω ω<< ≈ − → ≈

One of the integrators in each resonator needs to be delay-free to insure 
that the poles are on the unit circle

In high-frequency modulators realized using SC integrators it is 
advantageous to have a delay in every integrator, reducing speed 
requirements  the denominator of the resonator becomes now

( ) ( )2
12 1p z z z g= − + +

Poles are now outside the unit circle, at 11 j g±
If                               is still a good approximation

It should be noticed that the resonators by themselves are unstable, as 
clear from the previous analysis; however, they are embedded in a 
stable feedback system, which prevents local oscillations 

1 1 11,     gω ω<< ≈
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CIFF topology

Alternative topology: cascade of integrators with feedforward (rather than 
feedback) paths to create NTF zeros – CIFF topology 

If b1=bN+1=1 and all other bi are zero, then it can be shown that the loop 
filter does not process the input signal – same advantages as previously 
discussed
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CIFF with complex zeros

CIFF with complex zeros (for the sake of readability, only first and last 
feedforward paths are shown)
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Fourth architecture – CRFF 



Advanced AD/DA Converters Higher-Order ΔΣ Modulators 41

Multi-stage modulators

At moderate OSR values, a high SNR cannot be obtained with a 1-bit 
quantizer simply by raising the order of the modulator, because stability 
limits the permissible input signal amplitude

Multi-bit quantizer flash ADC – linearity issues, complexity grows 
exponentially with #bits

Different strategy multi-stage modulators! (with their own problems, 
of course…)
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Leslie-Singh (L-0 cascade) structure

Lth-order ΔΣ modulator as first stage, zero-order ADC as second stage; 
the outputs of the two stages are digitally filtered and combined to 
obtained the overall output 

The q-error e1 of the first stage is extracted in the analog domain, and 
then converted into digital by the multi-bit second stage

( ) ( ) ( ) ( ) ( )1 1 2 2V z H z V z H z V z= +

Usually H1 implements the latency of the second ADC:                               
H2 is instead chosen as the digital equivalent of NTF1

( )1
kH z z−=

Advanced AD/DA Converters Higher-Order ΔΣ Modulators 43

Leslie-Singh (L-0 cascade) structure

Therefore, NTF1 shapes the q-error of the second stage, which can be 
made much smaller than the q-error of the first stage – the second stage 
has no feedback no latency issues can be implemented e.g. as a 
multi-bit pipeline ADC (easier than a multi-bit loop quantizer in the first 
stage) SQNR enhancement > 20dB

We can avoid the difficult subtraction yielding e1(n) by choosing y1(n)
instead of e1(n) as input to the second stage:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

1 1 1 1 1 2

1 1 2        

k k

k

V z z STF z U z NTF z E z NTF z z E z E z

z STF z U z NTF z E z

− −

−

= + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= −⎡ ⎤⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 11Y z V z E z STF z U z NTF z E z= − = + −⎡ ⎤⎣ ⎦

Choosing now

or actually                            , to make it causal (the same delay of course 
for            as well) we obtain:          

( ) ( )
( )
1

2
1 1

NTF z
H z

NTF z
=

−

( ) ( )1
2 2H z z H z−→

( )1H z
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Leslie-Singh (L-0 cascade) structure

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ){ }
( )
( ) ( ) ( )

( ) ( )

1 1 1

1
1 1 1 2

1

1 1
2

1 1

            1
1

         =
1 1

k

k

k k

V z z STF z U z NTF z E z

NTF z
z STF z U z NTF z E z E z

NTF z

z STF z z NTF z
U z E z

NTF z NTF z

−

−

− −

= +⎡ ⎤⎣ ⎦

− + − +⎡ ⎤⎣ ⎦−

+
− −

in-band the SQNR obtainable with this choice is very close 
to the one given by the previous circuit – a disadvantage though is that 
y1(n) contains the signal u(n) as well the second ADC must be able to 
handle much larger signals and must have a much higher linearity! 

1 1NTF <<
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Leslie-Singh (L-0 cascade) structure

However, we have actually seen modulators where the loop filter only 
processes q-noise, but no signal, e.g. the CIFB modulator with bi=ai and 
bN+1=1. This yields STF(z)=1, and the output of the last integrator is

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1

1

1

           1
N N NX z Y z b U z STF z U z NTF z E z b U z

NTF z E z
+ += − = − − −⎡ ⎤⎣ ⎦

=− −⎡ ⎤⎣ ⎦

NX

NX

Y
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Leslie-Singh (L-0 cascade) structure

XN(z) can be used as input to the second stage, as it does not contain 
the signal but only q-noise

It is possible to adopt the same procedure with other low-distortion 
architectures extract y-u ≅ e, and use it as input to the 2nd stage

E.g.: 1st stage in L-0 is a 2nd-order low-distortion CIFF modulator (Silva-
Steensgaard in this case:

( ) ( ) ( ) ( ) ( )21 2
2 11     1      STF z NTF z z X z z E z− −= = − =−

X2(z) can be used directly as input to the second stage!
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MASH modulator

Obvious extension Multi-stAge noise-SHaping (MASH, probably 
worst acronym ever!) modulator, where the 2nd stage is yet another ΔΣ
modulator  

( ) ( ) ( ) ( ) ( )1 1 1 1V z STF z U z NTF z E z= +

( ) ( ) ( ) ( ) ( )2 2 1 2 2V z STF z E z NTF z E z= +
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MASH modulator

For E1(z) to be cancelled, we require

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 2 1        ,    H z NTF z H z STF z H z STF z H z NTF z= → = =

STF2 is often only a delay and easy to implement

The overall output becomes

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 2 1 1 2

2 1 1 2 2        

V z H z V z H z V z STF z V z NTF z V z

STF z STF z U z NTF z NTF z E z

= − = −

= −

A typical case is a MASH with two 2nd-order modulators (2-2 MASH) 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2

21
1 2

44 1
2

1

1

STF z STF z z

NTF z NTF z z

V z z U z z E z

−

−

− −

= =

= = −

= − −



Noise shaping performance of a 4th-order single-loop modulator, but 
stability of a 2nd-order modulator!

In practice, the E1 input to the second modulator needs to be scaled to fit 
within the stable input range (scaling factor usually ¼ if the 1st stage is 
single-bit, higher than ¼ if multi-bit – the inverse of the scaling factor 
must be included in H2)

If the equation                                              does not hold, E1 appears at 
the output filtered by 

where “a” denotes the actual value of the analog transfer function this 
may result in a dramatic SQNR deterioration  this is the critical issue 
in all MASH modulators
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MASH modulator

( ) ( ) ( ) ( )1 1 2 2H z NTF z H z STF z=

( ) ( ) ( ) ( )2 1 1 2a aSTF z NTF z NTF z STF z−
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MASH modulator

Another advantage of MASH is that is that the 2nd stage operates on e1, 
which is noise-like, even if it may contain some harmonic distortion 
the final e2 is very similar to true white noise! E.g. below, the third 
harmonic is reduced by more than 30dB across the 2nd stage – no need 
of dithering in MASH
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MASH modulator

Furthermore: multi-bit quantizer in the 2nd stage can be used without 
need of correction of DAC non-linearity – this is because the non-
linearity error of this DAC is multiplied by H2 = NTF1 highpass filtered 

suppressed in the baseband!  Also, the input of the 2nd stage does not 
contain any signal no harmonic distortion is generated!                    
The small additional noise due to DAC non-linearities can be tolerated
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3-stage MASH

Three-stage MASH q-error of first and second stage can be (ideally) 
cancelled with

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2

2 2 3 3

0

0

H z NTF z H z STF z

H z NTF z H z STF z

− =

− =
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3-stage MASH

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )1 1 2 3

1 1 3
2 3

H z NTF z NTF z NTF z
V z STF z H z U z E z

STF z STF z
⎡ ⎤⎣ ⎦= +

Since H1 is an STF, the STFs are flat in the passband, the final q-error is 
e3 filtered by the product of the three NTFs!

Three stages very high SQNR is desired extremely low q-noise 
required leakage of e1 and e2 [due to mismatch between analog 
transfer functions (STF1,2,3 and NTF1,2,3) and digital ones (H1,2,3) ] is 
critical and usually dominant

[ ] [ ] [ ]1 1 1 1 2 1 2 2 2 3 2 3 3 3

1 1 3 3 3   
V STF U NTF E H STF E NTF E H STF E NTF E H

STF H U NTF H E
= ⋅ + ⋅ − ⋅ + ⋅ + ⋅ + ⋅
= ⋅ ⋅ + ⋅ ⋅

In single-stage high-order modulators, imperfections in the passive and 
active components of the loop filter change NTF and STF somewhat, but 
as long as the loop gain >>1, the q-noise will be shaped very well

In MASH, however, matching between the various analog vs. digital 
transfer functions is crucial

For the three-stage MASH, the leakage transfer function of e1 and e2 to 
the output are:
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Noise leakage

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 2 2

2 2 2 3 3

l

l

H z H z NTF z H z STF z

H z H z NTF z H z STF z

= −

= −

Simplifying assumptions:

1) The leakage of e2 is less important than that of e1, since Hl2
represents higher-order noise shaping than Hl1 (e.g., in a 2-2-1 
MASH, Hl1 is at most of order 2, while Hl2 is of order 4).  Moreover,  
e2 is smaller than e1 if a multi-bit quantizer is used in the 2nd stage 

STF NTF

NTF NTF
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Noise leakage
2) In Hl1 the effect of an imperfect NTF1 dominates the effect of an 

imperfect STF2:

This is because H2=NTF1 errors due to imperfect STF2 are shaped; 
errors due to imperfect NTF1 are not shaped, since H1=STF1 has 
unity gain over the passband

3) Thus, we can approximate STF2 = H1 = 1 

( ) ( ) ( ) ( ) ( )1 1 2 1 1l a iH z NTF z H z NTF z NTF z= − = −

with “a”=actual; “i”=ideal

4) Since NTF1=1/(1-L1), and L1>>1, we can rewrite the above expression 
as

which is much simpler to handle than the original equations

( )1
1 1

1 1
l

i a

H z
L L

≈ −

( ) ( ) ( ) ( ) ( )1 1 1 2 2lH z H z NTF z H z STF z= −
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Noise leakage

Example: 1-1 (or 1-1-1) MASH – loop filter of the first stage is a simple 
delaying integrator, with ideal transfer function

If there is an error D in the nominal capacitance ratio used in the SC-
integrator, and the opamp has a finite DC gain A, the actual transfer 
function becomes (D<<1, a/A <<1) 

Since                    ,  we have

( )
1i

aI z
z

=
−

( )

11 ,       1

a
aI z

z p
a aa a D p

A A

′
=

′−
+⎡ ⎤′ ′= − − = −⎢ ⎥⎣ ⎦

( ) ( )1L z I z=−

( ) ( )

( )

1
1 1 11

1 1 1            1

l
z z p a aH z z D
a a a A A

D az
A a A

′− − +⎡ ⎤= − = + − +⎢ ⎥′ ′ ⎣ ⎦

+⎡ ⎤≈ + − +⎢ ⎥⎣ ⎦
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Noise leakage

Thus, there is an unfiltered leakage component equal to e1/A, and a 
component that is 1st-order filtered very high gain opamp required for 
the unfiltered error; if OSR is moderate, then also D<<1 is required 
very high matching between capacitors

An error in the path coupling the 1st stage to the  2nd stage will also add to  
, but its effect at the overall output will be at least 1st-order 

filtered, since the error will pass through H2

( ) ( )1 1lH z E z

( ) ( )1
1 1 11l

D aH z z
A a A

+⎡ ⎤≈ + − +⎢ ⎥⎣ ⎦
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Noise leakage – 2-0 MASH

For a 2nd-order first stage the leakage of e1 will be reduced – the Taylor 
expansion of the leakage transfer function around z=1 (i.e. at DC) is

with
( ) ( ) ( )1 1 2

1 0 1 21 1 ...lH z A A z A z
− −

= + − + − +

1 2 1 2
0 12

1 1
2

;         

2 44

a a a aA A
A A

a bA D
A

α

+= =

− + + += +

Advanced AD/DA Converters Higher-Order ΔΣ Modulators 59

Noise leakage

First term unfiltered leakage, proportional to the inverse of the square 
of the opamp gain usually very small

Second term 1st-order filtered; Third term 2nd-order filtered; these 
two terms tend to dominate in typical situations

1 2 1 2
0 12

1 1
2

;         

2 44

a a a aA A
A A

a bA D
A

α

+= =

− + + += +


