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Overview

• Basic MOD2 modulator

• Non-linear behavior and dead bands

• Stability

• Alternative designs of MOD2

• Decimator filter
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Basics

For most applications, MOD1 is not enough, in terms of resolution and 
idle-tone generations – MOD2 is a much better choice!

Straightforward way of implementing MOD2: replace the quantizer in 
MOD1 with another copy of MOD1:

Linearized circuit:
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MOD2 linear equations
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NTF

STF=1, and NTF is the square of MOD1’s NTF Æ much higher 
attenuation of in-band q-noise!

( ) ( ) ( ) ( ) ( ) ( )
222 2 4 41 2 21    2sin 2j f j f j f j fNTF z z NTF e e e e f fπ π π π π π− − −= − → = − = ≈⎡ ⎤⎣ ⎦

Notice that the out-of-band gain of the q-noise is higher in MOD2 Æ
needs a more selective decimation filter (in fact, the total power of the 
q-noise is higher in MOD2)

Advanced AD/DA Converters Second-Order ΔΣ Modulators 6

Noise power

Following the same steps used in the derivation of the in-band q-noise 
for MOD1, we obtain

If again             , and assuming an input sine wave of amplitude M, we 
obtain the SQNR expression 

( )
1 4 2

42 22
50

2 2
5

eOSR
q ef

OSR
π σσ π σ= ⋅ =
⋅∫

2 2 5

2 4

2 15 
2q

M M OSRSNQR
σ π

= =

2 1 3eσ =

Double OSR Æ SQNR increases by a factor 32 = 15dB = 2.5 bits!

This is much better than the 1.5 bits given by MOD1

Example: MOD2, OSR=128, M=1 (single-bit DAC)  Æ SQNR=94.2dB Æ
resolution of almost 16 bits (if audio is targeted, fB=20kHz and 
fs=5.12MHz, not an issue)

With MOD1, we need OSR=1800 and fs=72MHz

Single-bit quantizer Æ same inherent linearity as already discussed for 
MOD1
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SQNR
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MOD2 simulations

MOD2 is, as MOD1, intrinsically non-linear Æ time-domain simulations 
are more reliable than the linearized model (but, alas, also much more 
difficult to generalize!)

The actual time-domain plot of the MOD2 output, however, provides 
very little insight about the quality of the output signal!
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Simulations

The spectrum of the MOD2 output signal, for an input of -6dBFS, 
shows a 40dB/decade noise shaping, as expected, which yields an 
SQNR of 86dB, extrapolated to 92dB at full scale, in close agreement 
with the 94dB predicted by the theory (previous SQNR curve)

Advanced AD/DA Converters Second-Order ΔΣ Modulators 10

Simulations

There are, however, two difficulties. The first is that there are 3rd-order 
and 5th-order harmonics in the spectrum, which cannot be accounted for 
by a linear system and white quantization noise model!

The second is that the theoretical NTF (scaled by               – more on 
the NBW later) does not align with the simulated one: it is lower at low 
frequencies and higher at high frequencies 

22 e NBWσ
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Simulations

We start with the second discrepancy, by calculating (as already done 
in the MOD1 case) the effective quantizer gain k as

2k E y E y⎡ ⎤= ⎡ ⎤⎣ ⎦ ⎣ ⎦
Using the simulation data, we obtain k=0.63 – a recomputation of the 
NTF with k=0.63 yields new poles/zeros (the zeros are actually still at 
DC) for the NTF, and now the theoretical quantization noise matches 
time-domain simulations very closely
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Quantizer gain

However, if the input signal amplitude is lowered, simulations show that 
the optimal quantizer gain increases (slightly) to k=0.75 (for inputs below       
-12dBFS) 

The following formula gives the NTF for any value of k, once the NTF for 
k=1 is known:
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where NTF1 is the NTF for k=1; for k=0.75 we obtain
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This NTF has an in-band gain 1/0.75 = 2.5dB higher than NTF1 Æ
in-band noise in time-domain simulations should be 2.5dB higher than 
that predicted by NTF1
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Non-linear quantizer gain
When the input amplitude exceeds -6dBFS the optimal k decreases, 
degrading further noise shaping. Below you can see the SQNR plots for 
two different frequencies, comparing them with the theory in the ideal 
case of k=1. In the middle range of the amplitudes the match is quite 
good; for small amplitudes the SQNR is lower; for large amplitudes the 
SQNR peaks at -5dBFS, then drops abruptly Æ the largest degradation 
is for large low-frequency signals, which apply large signals for a longer 
time. Finally, it is clear that the SQNR here is much more well behaved 
than in MOD1

Advanced AD/DA Converters Second-Order ΔΣ Modulators 14

Non-linear effects

We have seen that k=0.75 for small input signals, and k=0.63 for larger 
signals Æ the binary quantizer shows a non-linear effective gain  Æ
the distortion we have wondered about should in fact be expected!!

We can apply a quantitative approach by replacing the quantizer with 
the (weakly) non-linear quantizer transfer curve (QTC) + additive noise 
(as usual)

QTC is determined by computing the average quantizer output as a 
function of the average quantizer input, while the input signal amplitude 
is swept
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Quantizer transfer curve 

QTC is compressive, meaning that k drops for large inputs (we already 
knew this) Æ cubic approximation, with coefficients k1 = 0.6125 and     
k3 = -0.0712

We proceed by first determining the NTF with k=k1 :
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Quantizer transfer curve 
Now, the distortion term k3y3 is added at the loop output     Æ same place as 
q-noise    Æ shaped by the NTF    Æ distortion is largest where the NTF is 
largest    Æ at the edge of the passband

For a small low-frequency sinusoidal input of amplitude A, the average of the 
output is also a sinusoid of amplitude A (since STF=1), and, in the linear model, 
the average of the quantizer input is also a sinusoid, of amplitude A/k1 Æ the 
amplitude of the 3rd harmonic generated by the QTC is therefore  

from which the 3rd-order harmonic distortion is easily calculated as

where                  , since the NTF must be evaluated at the frequency of the 3rd

harmonic  Æ with A=0.5 (= -6dBFS) and f=1/500, same conditions as the 
previous FFT, we obtain HD3 of -87dB, while we simulated -82dB  Æ fair 
approximation, but no more than fair!
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Quantization noise

In-band q-noise power (still with binary quantization) vs. DC input level Æ
much better behaved than MOD1, but tones are still present!              
Large input signals result in large q-noise (we know that k drops with 
increasing signal amplitude) Æ q-noise is not stationary, but rather time-
variant, as it is a function of the input signal!
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Stability of MOD2

It can be shown that MOD2 is stable for all DC inputs below the 
reference (assumed to be 1V, or better 1)

Since the modulator tracks the low-frequency part of its input, we might 
be tempted to conclude that all time-varying signals remaining below 1 
lead to stable operation. But this is not true, see below! Luckily, this 
input waveform is not likely to appear ☺

Advanced AD/DA Converters Second-Order ΔΣ Modulators 19

Stability of MOD2

It is known that MOD2 is stable for arbitrary inputs lower than 0.1 – the 
upper limit of the input amplitude still guaranteeing stable operation is not 
known! 

It is a good idea to keep the input amplitude below 0.9 or 0.8 (which is the 
one drawback compared to MOD1, which can accept input signals with 
amplitude up to 1), and also to be able to detect unwanted large states, to 
force the modulator back into a stable state
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Dead bands

Finite gain A of the opamps is again resulting in dead bands; however, 
the fact that there are two cascaded integrators results in much smaller 
dead bands, with width 1.5/A2 instead of 1/A as in MOD1 Æ much 
smaller problem! Simulations confirm this (A=100)
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Circuit design issues – op-amp offset 

The offset of the first integrator and of the input DAC are added to the 
input signal and cause equal offsets at the output

The offset of the second integrator is referred to the input by dividing it 
by the gain of the first integrator, which is very large at DC Æ negligible 
impact

The ADC offset is also divided by the gain of one or more integrators 
when referred to the input   Æ negligible impact    Æ opens up the 
possibility of positioning the ADC thresholds at optimal voltage levels

This and next several slides from Maloberti’s book
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Circuit design issues – finite op-amp gain 

The DC gain of the op-amp is not infinite Æ we obtain

Æ gain error of                 , and pole inside the unit circle:                            
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Finite op-amp gain – II 

STF is only marginally affected; however, the NTF is not longer zero at 
DC, becoming

and, at DC (i.e.        )                                               

If the two gains and the two caps are equal, we obtain

Corner frequency at 
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(sc is negative,   
as it should in a 
stable system)

The finite op-amp gain does not affect the NTF as long as                       
Æ both gain and OSR must be set to satisfy the condition

resulting in a very relaxed op-amp gain demand for modulators with 
medium OSR 

However, this assumes a linear gain A – a low opamp gain can be (and 
often is) a problem if the gain is sufficiently non-linear
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Finite op-amp gain – III 

B cf f>>

( )0
0 0

1 1 1               1
2 1 2 2 1

s s s
B c B

f f ff f f A OSR
A OSR A

π
π π

>> → >> → ⋅ >> → + >>
+ +



Advanced AD/DA Converters Second-Order ΔΣ Modulators 25

Circuit design issues – finite op-amp gain 

Simulations on a 2nd-order single-bit ΔΣ modulator with op-amps with 
A0=100 and sampling frequency of 2MHz  Æ corner frequency at 3kHz, 
in very good agreement with theory

Furthermore, as long as the condition                                    is fulfilled, 
no SNR penalty is paid, compared to having A0=100k; however, 10dB 
are lost if OSR=250, see below

( )01 320A OSRπ + ≈ >>
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Circuit design issues – finite op-amp bandwidth 

Assuming a single-pole response, we have

with                        . The integration phase stops at T/2, causing an error 
on the final output of

The error is proportional to the signal itself Æ bad for linearity

2T
BW outV e β τε −=Δ
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Finite op-amp slew-rate and bandwidth

Assuming an ideal SC integrator, an input step of –Vin would result in an 
output step of                          ;  in contrast, a real op-amp has a slewing 
time of 

At t=tslew, the output voltage differs from the final value by                 ,  
and evolves exponentially in the remaining fraction of T/2; at T/2, the 
error on the output voltage is

Thus, also in this case the error depends on the step itself Æ possible 
impact on linearity 

All these equations can be used in a behavioral simulator to 
enormously speed up the study of the combined impact of finite 
bandwidth and finite slew rate for the op-amp
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Finite op-amp slew-rate and bandwidth – II 
Ideal simulations show that the maximum changes at the output of the 
1st and 2nd integrators are 0.749V and 3.21V Æ with an fs of 50MHz, we 
have 

Ideally, SNR=72dB with op-amp’s βfT=100MHz, OSR=64, fin=160kHz         
If                     ,                      , the SNR does not change significantly;     
if                     , the SNR is not much affected, but the non-linear output 
response gives rise to harmonic tones – finally, simulations show (as 
expected) that a performance degradation on the 2nd integrator has a 
lower impact than on the 1st

( ) ( )1 ,1 2 ,22 75      2 321out outSR V T V s SR V T V sμ μ>Δ ≈ >Δ ≈

2 325SR V sμ=1 78SR V sμ=
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single-bit 
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Alternative 2nd-order modulators – Boser-Wooley

Two delaying integrators Æ good, because they can settle independently 
of each other, relaxing speed requirements (and therefore power 
consumption) in DT designs

Assuming k=1: 
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Other 2nd-order modulators – Boser-Wooley – II 

We desire:

Æ the conditions are:

Infinite number of possible solutions  Æ in reality dynamic range 
scaling (more about it later) removes the ambiguity in selecting the 
three parameters 
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Silva-Steensgaard 

Direct feedforward from input to quantizer, and single feedback from the 
digital output

( ) ( ) ( ) ( )211V z U z z E z−= + −

The output is, as before:

However, the input signal to the loop contains now only the shaped 
quantization noise!

The loop does not process the signal Æ does not have to be very linear, 
great advantage!
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Silva-Steensgaard 

( ) ( ) ( ) ( )211U z V z z E z−− =− −

( )2z E z−−Output of the second integrator is               ,  which can be directly used 
if the modulator is the first stage in a MASH architecture
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Error-Feedback

An example of a modulator that looks simple and therefore attractive, 
but which is not suitable for analog applications!

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 22 1fV z Y z E z U z H z E z E z U z z z E z− −= + = + + = + − + +

The q-error is obtained in analog form by subtracting the input of the 
internal ADC from the DAC output Æ we obtain

( ) ( ) ( )211,               1STF z NTF z z−= = −Æ
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Error-Feedback

Very nice, but also very sensitive to parameter variations in the 
feedback path!

For instance, if the multiplication by 2 has a 0.5% error, resulting in 
2.01, the NTF will become

Thus, at very low frequencies the NTF will be 0.01 instead of 0, or 
equivalently -40dB Æ typically, ENOB not larger than 10, even with 
high OSR – comparable mismatches still allow ENOB=18 for all other       
2nd-order modulators discussed so far!

On the other hand, the error-feedback modulator is very useful in the 
digital loop required in ΔΣ DACs, since the numbers 1 and 2 (and 
many others!) are easily realized with arbitrary precision in the digital 
domain!

( ) ( )21 11 0.01NTF z z z− −= − −
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More general 2nd-order structure

The input is fed also to the input of the second integrator and of the 
quantizer

The STF becomes                                                               Æ

a free 2nd-order FIR pre-filter can be incorporated into the modulator!

( ) ( ) ( )21 1
1 2 31 1STF z b b z b z− −= + − + −
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General 2nd-order structure

All possible feedforward and feedback coefficients!
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General structure

( ) ( ) ( )1 2 3
1 2 3 2 3 31 2 1 2A z a a a z a a z a z− − −= + + + − + − − +

The a3 feedback term increases the NTF order to 3, but does not 
increase the number of in-band NTF zeros Æ not used in discrete-time 
applications – however, it is often useful in continuous-time modulators! 
(as we shall see later)

Multiple feedforward/feedback yields more flexibility Æ enhanced 
stability, improved dynamic range
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Optimal 2nd-order modulator

So, which architecture is the best?? This actually boils down to optimizing 
the NTF! Of course, also the topology used is important, but more 
because of practical considerations (such as robustness to mismatches 
etc) than fundamental limits

The STF only filters the signal, and plays no major role in the SQNR

Let us find the 2nd-order NTF yielding the highest SQNR Æ minimizes the 
in-band quantization noise – we start from 
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Now, assuming A(z) almost constant in the passband, for a high value of OSR 
the magnitude of the NTF in the passband is 
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Optimal 2nd-order modulator – II 

Shifting the zeros from                   to              , we obtain the new NTF:

( ) ( )( ) ( )2 2NTF K Kω ω α ω α ω α= − + = −

The integral over the passband of |NTF|2 is a measure of the in-band noise Æ
the following integral should be minimized with respect to α:
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To repeat, this assumes white q-noise and A(z)=A(1) over the passband
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Optimal 2nd-order modulator – III 

An exhaustive search of the NTF design space for the highest SQNR 
yields the NTF with denominator

( ) 1 21 0.5 0.16A z z z− −= − +

Compared to our standard MOD2, this SQNR is more linear and supports 
signals closer to full scale without saturating. The peak SQNR is about 94dB, 
which is approximately 6dB higher than that of MOD2
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Decimation
Cascade of sinc filters Æ to find the order K of the sincK filter for an Lth-
order modulator, we have to consider the following: 

1) Around fB, the filter should cut off at a faster rate than the modulator 
NTF rises, so that very little out-of-band noise is left unsuppressed 
around fB after decimation

2) The gain of the filter around fs/OSR (and its harmonics) should be 
less steep than the NTF around DC, so that the folding of the noise 
from the bands around fs/OSR, 2fs/OSR, etc, after decimation adds 
negligibly to the in-band noise

Both conditions require K > L; usually, K = L+1 is already enough

example with 
sinc3 filter

Advanced AD/DA Converters Second-Order ΔΣ Modulators 42

Decimation

2nd-order modulator Æ since NTF grows with order 2, the order of the 
sinc should be 3 – higher is not necessary

If high resolution is needed Æ two-stage decimator

The first sinc3 (sincK in general) stage is clocked at fs and is used to 
reduce the sampling rate from fs to an intermediate frequency fD. The 
second stage (FIR or IIR) suppresses the remaining noise between fB
and fD/2, allowing a further reduction of the sampling rate to 2fB.

The second filter may be implemented as a cascade of so-called 
halfband FIR filters, and may also incorporate compensation for the in-
band droop of the sincK filter
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Decimation

Below: composite frequency response of NTF + sinc3 first stage of the 
decimator, with fD=4fB.

Lower fD Æ speed and complexity reduction for the second filter, but if 
fD/2fB drops below 4, the droop of sinc3 at fB becomes large; also, too 
much noise may be folded into the baseband, i.e., the second 
assumption for good decimation (see previous two slides) may not be 
fulfilled   Æ intermediate OSR of 4 seems to be optimal
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Hogenauer sinc3 architecture

Accumulators and differentiators!

The N-period delay in the differentiators is implemented with a single-
delay block; N is usually a power of 2 and therefore division by N does 
not require any arithmetic operation

Accumulators will overflow, but with wrap-around arithmetic (such as 2’s 
complement) the correct output will be obtained!

For M-bit input Æ M + K log2N bits (here, K=3 ) at all nodes are sufficient 
(fewer bits can be used in the internal nodes because of noise shaping!)
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