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Overview

• Basic concepts 

• 1st-order ΔΣ modulator

• Idle tones, stability

• Finite opamp gain, dead zones

• Decimator filter
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A/D conversion – basic concepts

Continuous-time analog to discrete-time digital   1) analog signal is 
sampled (with a period T, usually constant), and 2) the resulting signal is 
eventually quantized ( assumes one of a finite number of values) 

Quantization is usually (but not always) uniform two adjacent levels 
differ by a quantity Δ 

Quantization is performed by a quantizer (ideal A/D converter), assumed 
memoryless static input-output y-v curve

Here: only positive input values, unipolar quantizer, Δ =1
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A/D conversion – basic concepts
Below bipolar quantizers with associated error functions (e = v-y)    
top: a step occurs for y=0; bottom: y=0 is in the middle of a step; in both 
cases, Δ=2 q-levels are integer in both cases (odd in the first, even in 
the second)

T=1 and Δ=2 are assumed in the following (Schreier’s book) 
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A/D conversion – basic concepts

As long as y is between –(M+1) and (M+1) the error is between 1 and -1 
this is the (no-overload) input range 

The difference between maximum and minimum level is the full scale 
(FS) of the quantizer; the table summarizes other notable properties
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A/D conversion – basic concepts

Quantizer is deterministic v and e are fully determined by y

However, if y stays within the FS and changes by sufficiently large 
amounts from sample to sample, its position within a quantization 
interval is essentially random    e is assumed to be a white noise 
process with samples uniformly distributed between –Δ/2 and Δ/2   
e has zero mean, and power

This noise is simply added to the scaled input, to give

In fact, this equation is always true the approximation is in the 
assumed nature of e

A white-noise-like error e is not produced in a number of cases, such as 
with a constant input, or a periodic input harmonically related to T (even 
worse if y changes from sample to sample by rational fractions of Δ)

2 2 12eσ =Δ

v ky e= +
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Quantization error

Below: full scale sinusoid sampled by a 16-step quantizer sampling 
frequency is relatively high, and in no simple relation to signal frequency 

q-errors appear to be quite random (even if in reality they are not 
random (i.e. uncorrelated) at the peaks of the sinusoid)

The mean value of the error is 0.30, which is very close to the white-
noise-approximation expected value of

The Fourier transform also shows a white-noise-like noise floor

22 12 1 3=
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Quantization error

Below: full scale sinusoid sampled at 8 times its own frequency 
q-error is periodic and assumes only 3 values far from uniformly 
distributed. The mean value of the error is only 0.23, and the FFT shows 
only two spectral components, fundamental and 3rd harmonic!
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Quantization error

As clear from the figure below, the gain k of the linear model for a multi-
bit quantizer is given by the ratio of the step size to the distance between 
adjacent thresholds

In a single-bit quantizer, however, this is not possible, since there is only 
one threshold! Below: the two lines are both possible, both resulting in 
the same maximum error of Δ/2, although with different no-overload 
ranges
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Quantization error

If the statistical properties of the input y are known, a criterion for 
determining k is to minimize the mean square value (i.e., the power) of 
the error sequence e; this value is defined as the expected value of e2:
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, with

This is minimized by

Sanity check: if some k corresponds to a given y, then if we define 
y’=10y, it is immediate to check the k’=k/10, which makes sense since 
the output does not change. When a system containing a binary 
quantizer is replaced by a linear model, the estimate of the quantizer 
gain k should be found from extensive simulations; otherwise, misleading 
results may follow.
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MOD1 modulator

Simplest ΔΣ modulator, MOD1, either analog or digital one integrator, 
one 1-b DAC, and one 1-b DAC transforms continuous or finely-
quantized input into coarsely-quantized output with noise-shaped spectrum

Here: CT and DT implementations

CT

DT
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MOD1 as A/D converter

Below: u=0 output toggles between +1 and -1; u=0.06 output 
toggles until the integrator output is so high that two adjacent +1 are 
produced

The circuit forces the average of  v/Rf to be equal to the average of u/Ri 
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MOD1

Remarkable feature: for a constant input, arbitrarily high accuracy can be 
achieved (in principle!). Further: a common source of non-linearity in 
Nyquist converters is component mismatch – here not an issue!!  In fact, 
changing the integrating capacitor in the CT modulator, or the ratio C1/C2
in the DT modulator, simply scales the output, but does not change its 
sign, which is the only thing the 1-b ADC detects! Similarly, comparator 
hysteresis, opamp offset and component mismatch have no impact on 
the linearity. At worst, the input full-range scale will shift and the input-
referred offset will be non-zero.

These qualitative results can be retrieved by a simple analysis on the 
equivalent circuit below
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MOD1 analysis
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Thus, combining the equations for n=0,1,2,…N,  we have

If y is bound, we have                               , which from the above 

equation implies that the average of the input samples u is equal to the 
average of the digital output v. The average of v is recovered by 
cascading a digital low-pass filter to the modulator

MOD1 uses a 2-level quantizer DAC capable of perfect linearity – in 
general, 2nd-order effects such as dependence of quantizer threshold 
and/or reference and/or power supply on input signal introduce some 
non-linearity
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MOD1 in a D/A converter

Example: we want to drive an 8-bit DAC with a 16-bit data stream 
one could discard the 8 LSBs, with an awful loss of resolution

Better correct the truncation error in the current sample by introducing 
the opposite error in the next sample truncation averaged over time!

This approach is shown in the 1st-order digital modulator here, used in a 
ΔΣ DAC!

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 ;      1 1 1

1 1
LSB LSBy n u n y n y n y n v n

y n u n y n v n

= + − − = − − −

= + − − −

This is the MOD1 equation of the previous slide m-bit resolution can 
be preserved! It is also easy to show that the accumulated difference 
between input and output is always less than one DAC LSB
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MOD1 in the z-domain
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DC value for z=1:  if E is limited, we recover the fact that V and U have 
the same DC value arbitrarily high resolution at DC
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MOD1 in the z-domain

( ) ( ) ( ) ( )11V z U z z E z−= + −The equation                                           can be written in the following 
general form:

where the STF is the signal transfer function, and NTF the noise transfer 
function

To find the in-band power of the q-noise, we evaluate the NTF for 

At low frequencies (high OSR) we have

High-pass response q-noise suppressed at and near DC (where we 
have the input signal) and amplified out-of-band (at or near 0.5fs)

This noise-shaping action is crucial for the effectiveness of the ΔΣ
approach 

( ) ( ) ( ) ( ) ( )V z STF z U z NTF z E z= +

2j fz e π=
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MOD1 in the z-domain

Quantizer error from internal ADC is white  its power is Δ2/12 = 1/3, 
and its power is found between DC and Nyquist = fs/2 (=0.5 normalized to 
the sampling frequency) thus, the spectral power density is

( )
2 12 2
1 2 3eS f Δ= =
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SQNR

Thus, the in-band noise power of the output v is given by

If the input signal is a full-scale sinusoid with peak amplitude M, with 
STF=1 we have that the output signal power is                 , resulting in a 
signal-to-quantization-noise ratio (SQNR) of

This means that the SQNR increases by 9dB if the OSR is doubled 
this is not much, and the SQNR is usually relatively low (less than 70dB 
even for OSR as high as 256, M=1)
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Simulations

Spectrum of the output of MOD1 for a full-scale input  noise shaping 
is close to the expected 20dB/decade; the optimal k is 0.9 (in the sense 
explained earlier), very close to the k=1 assumed in the linear analysis. 
However, SQNR = 55dB for OSR=128 and M=1, while 60dB was 
expected!
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Simulations

In fact, the SQNR behavior is quite erratic vs. signal amplitude and 
frequency! (here: OSR = 256)

Obviously, high-frequency signals very often yield a higher SQNR than 
low-frequency signals
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Strange behavior
In-band noise is particularly ill-behaved for DC inputs, where it is very 
large for specific values of the input (e.g., 0 and ±1, ±1/2, ±1/3, etc)
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Idle tones
If the input to the modulator is a DC value, the hypothesis of large and 
random variations at the input of the quantizer (a necessary condition for 
a white q-error) are not met any more!

Recall the MOD1 equation:

We also assume (to avoid ambiguity) that              if  

This yields

Assuming u=1/2 and y(0)=1/2, we have a periodic output with period 4: 
so-called idle tone!

( ) ( ) ( ) ( )
( ) ( )

1 1

sgn

y n y n u n v n

v n y n

= − + − −
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Advanced AD/DA Converters First-order ΔΣ modulator 24

Idle tones

An idle tone (also called limit cycle) at fs/4 is relatively easy to filter out. 
However, in general, if u=n/m, n and m odd integers, then the limit cycle 
has period m; if n or m are even, then the limit cycle has period 2m.
If m is large, the fundamental of the limit cycle and maybe some of its 
harmonics fall into the signal band, even if OSR is high 

If input is a rational number limit cycles; otherwise no limit cycles; 
however, limit cycles appear also in the presence of slowly varying 
inputs that stay near a critical level long enough for a limit cycle to 
appear 

In digital audio idle tones cannot be tolerated, since the human ear can 
detect tones that are 20dB below the white noise floor! 

Higher-order modulators are much less prone to generate idle tones  
a strong reason for using them!

Dithering (i.e. adding a pseudo-white-noise to the modulator input, or to 
the quantizer input) is also an effective way of disrupting limit cycles
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Stability
A linear approach would predict an unconditional stability, as the phase 
of the loop transfer function is -90º at all frequencies (first-order system, 
one pole) – however, the modulator is not linear!

Assume DC input clearly, y becomes unbounded if |u|>1, since the 
feedback signal is only +1 or –1

If |u|<1 and |y(0)|≤2, the loop remains stable, with |y|≤2 – this is true also 
for time-varying inputs; in fact, using the MOD1 equation

if |y(0)|≤2, then                                , and since |u|<1, we obtain

By induction, the same equation applies for all time samples.                   
If |y(0)|>2 and |u|<1, the modulator will produce a string of +1 or –1 
(depending whether y(0)>2 or y(0)<2), until |y|<2; at this point, we are 
back to the previous case  MOD1 is stable with arbitrary |u|<1, and 
can recover from any initial condition 

( ) ( ) ( ) ( )1 sgn 1y n y n u n y n= − + − −⎡ ⎤⎣ ⎦

( ) ( )0 sgn 0 1y y− ≤⎡ ⎤⎣ ⎦

( ) ( ) ( ) ( )1 1 0 sgn 0 2y u y y= + − ≤⎡ ⎤⎣ ⎦
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Finite opamp gain

( ) ( ) ( ) ( ) ( )
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⎛ ⎞
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Assuming C1=C2 and A>>1, the voltage across C2 (= q2/C2) becomes 

( ) ( ) ( ) 11                          1 1 1
zU z V z

Y z p p
Az p A

− ⎛ ⎞= = + ≈ −⎜ ⎟− ⎝ ⎠

( ) 11NTF z pz−= −

There are several 2nd-order effects that affect the behavior of modulators 
– perhaps the most obvious is that opamps do not provide infinite gain!     
If the DC gain of the opamp is A, the difference equation for the charge 
in the integrating capacitance C2 becomes

with

The integrator does not provide an infinite gain at DC any more (leaky
integrator); the NTF becomes
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Finite opamp gain

The zero of the NTF shifts from DC (z=1) to z=p, inside the unit circle –
the NTF gain at DC changes from 0 to 1-p=1/A  – no longer infinite 
precision for DC signals  the NTF “fills-in” close to DC
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Finite opamp gain

The additional noise power caused by the filling-in of the NTF at low 
frequencies can be estimated by integrating the new NTF, 

between 0 and the signal band limit, i.e.           , and comparing with the 
ideal case of an infinite A. If A>OSR, the SNR loss is less than 0.2dB 
negligible

However, this assumes a linear gain A – a low opamp gain can be a 
problem if the gain is sufficiently non-linear!

(Also, a finite gain is a big issue in MASH (cascaded) modulator 
architectures)

( ) ( )
2 2 22 1 2 21 1 1j jNTF e pe p j A j Aω ω ω ω ω− − −= − ≈ − − ≈ + = +

OSRπ
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Non-linear analysis – dead zones

Let us assume a small positive DC input u, with infinite A, and with y(0)=0

We obtain for the first samples:

( ) ( ) ( ) ( ) ( )1 sgn 1 ;      y 0 0y n y n u n y n= − + − − =⎡ ⎤⎣ ⎦

( ) ( ) ( )1 0 sgn 0 1 0y y u y u= + − = − <⎡ ⎤⎣ ⎦

( )2 1 1 2 0y u u u= − + + = >

( )3 2 1 3 1 0y u u u= + − = − <

Thus, initially the output alternates; for the kth sample we have

( ) 1,     odd
,         even

ku k
y k

ku k
−⎧

= ⎨
⎩

The effect of u>0 occurs in the first odd sample for which ku–1>0, at 
which time v(k) is positive, and therefore v(k)=1 appears twice in a row 

this occurs with a frequency of u (i.e. after 1/u periods)
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Dead zones 

If now lossy integrator: ( ) ( ) ( ) ( ) ( )1 sgn 1 ;      y 0 0y n py n u n y n= − + − − =⎡ ⎤⎣ ⎦

( ) ( ) ( )1 0 sgn 0 1 0y py u y u= + − = − <⎡ ⎤⎣ ⎦
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( ) ( ) ( ) ( ) ( )2 23 1 1 1 1 1 0y p p u p u p p u p p= + + − + − = + + − − + <⎡ ⎤⎣ ⎦
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− −
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The effect of u occurs if sgn(y) is positive for some odd value of k; for k
large, this requires

1 1 1 1      
1 1 1 2 1 2

u p Au
p p p A A

−> → > = ≈
− + + −
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Dead zones

Thus, inputs smaller than 1/(2A) will have no effects on the output!          
e.g. with A=1000 and Vref=1V, a DC signal less than 0.5mV will have no 
effect! dead zone (or dead band) around u=0

Dead zones exist around all rational values of u, and 
are narrower (except those around ±1) than that 
around 0
Dead zones have an impact on limit cycles as well –
in an ideal MOD1 the limit cycles are unstable or 
non-attracting, since an arbitrarily small change in 
the input results eventually in large signals after the 

integrator and therefore in a disruption of the limit cycle – but if the 
integrator is leaky, the limit cycles are stable (attracting), since a small 
change in the input will lead to a small change in the integrator output, 
and consequently to no change in the output pattern – this is of course a 
very detrimental effect! (by the way, if the NTF zeros are outside the unit 
circle, the limit cycles are repelling, and the modulator becomes “chaotic” 
– good for breaking limit cycles)
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Decimation filter for MOD1

Very large q-noise at high frequencies out-of-band noise must be 
removed by a digital lowpass filter; afterwards the signal may be 
decimated, thereby reducing the sampling rate to the Nyquist limit 2fB
The gain of the lowpass filter must be flat and large in-band, and very 
small between fB and fs/2; furthermore, it is often desirable to have a flat 
group delay response in the signal band; this can be accomplished using 
a linear-phase finite-impulse-response (FIR) filter

In a single-bit modulator, it may be practical to use a single-stage high-
order FIR filter, since there are no actual multiplications involved 
between signal samples and coefficients of the filter taps. However, it is 
more efficient to carry out filtering and decimation in stages. The stages 
most often used are the so-called sinc filters

A sinc filter is an FIR filter with N-1 delays and N equal-valued tap 
weights – it computes the running average of the input data stream v(n)
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Decimation filter 

FIR filter (bi = 1/N), FIR output, 
and impulse response (with 
N=32):
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Decimation filter – II  

( )
( ) ( )
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In the frequency domain:

where the sinc function is defined as ( ) ( )sin
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f
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Sinc impulse/frequency response

( )1

1/ ,   0 -1
0,            otherwise

N n N
h n

≤ ≤⎧
= ⎨
⎩

( ) ( )
( )

2
1

sinc
sinc

j f fN
H e

f
π =

Gain close to 1 at baseband; close to 0 near fs/N and its harmonics 
if the sampling rate at the output is reduced by N, causing the noise 
around fs/N, 2fs/N, …,  to fold into the baseband, the energy of the 
aliased noise will be reduced by the attenuation of the sinc filter 
N=OSR should be chosen
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Decimation and folding

Obviously, g(t) has a period of NTs, i.e. a normalized period of N  
the fundamental harmonic of g is 1/N
The spectrum of fD is the convolution of the spectrum of f with the 
spectrum of g:

the harmonic content of F at frequency 1/N and its harmonics is 
folded (scaled by the corresponding tone in G) on top of the spectrum of 
F at and close to DC 

( ) ( ) ( )Df t f t g t= ⋅ ( )
s

1,       0
0,   

s

s

t T
g t

T t NT
≤ ≤⎧

= ⎨ < ≤⎩

We can see the decimated function fD as the original function f, multiplied 
by a rectangular function g having a duty cycle of 1/N: 

( ) ( ) ( ) ( ) ( ) ( )          D Df t f t g t F F Gω ω ω= ⋅ → = ∗

example with 
sinc3 filter
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Decimation filter – III 

How much residual noise is left after the FIR filter, compared to an ideal 
lowpass filter?   the noise at the FIR output is

which in the time domain becomes

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1 1

1 1 11 1
1

N
NzQ z H z NTF z E z z E z z E z

N z N

−
− −

−

−= = − = −
−

( ) ( ) ( )1
1q n e n e n N
N

= − −⎡ ⎤⎣ ⎦

Assuming e(n) and e(n-N) to be uncorrelated, and each with an rms 
value of σe, the q-noise power at the sinc output is

1

2
2

2

2 e
q N

σσ =

while the output noise power for a MOD1 followed by an ideal LPF with 
unity gain at DC is, with OSR=N:

2 2
2

33
e

q N
π σσ =
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Decimation filter – IV 

Thus, a single sinc filter is N times less effective than an ideal LPF 
therefore, the sinc is usually only one stage in a multi-stage decimator 
filter

By the way, in single-bit modulators the sinc decimator can be realized 
very easily

the output is a down-sampled count of the number of 1s over the last N 
clock cycles accumulate and dump 

If N=2k, the counter produces a k-bit output, which may be interpreted as 
a binary fraction between 0 and 1 in a unipolar topology. In a bipolar 
ADC, the MSB is inverted and the data is interpreted in a 2’s 
complement form
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Decimation filter – V 
Better decimation  two cascaded sinc filters   sinc2 filter   the 
impulse response is obtained by convolving the sinc response with itself

In frequency domain, the response is just the square of the sinc response:

( ) ( ) ( ) ( )
( )

22
2 12

2 21

sinc1 1         
1 sinc

N
j f Nj f fNzH z H e e

N z f
ππ

−
− −

−

⎛ ⎞⎛ ⎞−= → = ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
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Decimation filter – VI 

The residual q-noise at the sinc2 output is given by

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
1

2 2 2 1

12 1

1 1 1
1

1 1 1        1 1
1
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H1 performs an N-sample average in the time domain, while                       
corresponds to                              
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−
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If     is white with power     , the noise power at the output of the sinc2

becomes  
e 2
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Decimation filter – VII 

sinc2 noise:
2

2
2

3

2 e
q N

σσ =

Thus, the sinc2 noise is even lower than the ideal!! 

However, we have to take into account the passband droop for the 
desired signal (which can be equalized with a post-filter if necessary), 
which reduces somewhat the signal energy as well all in all, the SNR 
is slightly lower than in the ideal case – small difference, sinc2 ok!

In general, a sincL+1 LPF is sufficient for an Lth-order loop

ideal noise: 2 2
2

33
e

q N
π σσ =
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Decimation filter – VIII 

Finally, the triangularly-weighed sum needed for the sinc2 can be 
generated more efficiently than cascading two sinc filters, as shown e.g. 
in the solution below


