

Lars Ohlsson Fhager Electrical and Information Technology

Schedule Reminder

- Lab 2: Thursday, Nov 28, 8:15-12:00
 S-parameter measurement using a calibrated VNA
- Hand-in 2: Friday, Dec 6, 23:59
 Matching and bias design for an LNA
 ...to be validated in laboratory session 3
- Hand-in 1: with Hand-in 2
 - Revise according to feedback from supervisor
 - Re-submit corrected version

Lecture 7

- Amplifier Design
 - Stability Analysis by S-parameters
 - Design Cases
 - unilateral two-port, maximum gain (Case 1)
 - unilateral two-port, specific gain (Case 2)
 - bilateral two-port, maximum gain (Case 3)
 - "simultaneous conjugate match"
 - bilateral two-port, specific gain (Case 4)
 - conjugate match at one port, mismatch the other port
 - design method using "operating gain"
 - design method using "available gain"
 - Noise in a Two-Port
 - Design of Low Noise Amplifiers (LNA)

Stability Analysis by S-Parameters

2) conditionally stable if some Γ_S gives $|\Gamma_{out}| < 1$

and some Γ_L gives $|\Gamma_{in}| < 1$

Amplifier Design

General design case

- Given this:
 - two-port (S-parameters) and
 - source $\Gamma_{S'}$ and load $\Gamma_{L'}$
- The stability analysis gives allowed values of Γ_S and Γ_L
- After a proper choice of Γ_S and Γ_L the matching networks may be designed

Power Gain Definitions

Unilateral Two-Port, Maximum Gain

• Choose
$$\Gamma_s = S_1^*$$
 and $\Gamma_L = S_{22}^*$

i.e. apply conjugate match to both input and output

• The gain is then

$$G_{T} = \frac{P_{L}}{P_{AVS}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - \Gamma_{in}\Gamma_{S}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}\Gamma_{S}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - \Gamma_{out}\Gamma_{L}|^{2}}$$

Maximum Unilateral Transducer Gain:

$$G_{TUM} = \frac{P_L}{P_{AVS}} = \frac{1}{1 - |S_{11}|^2} |S_{21}|^2 \frac{1}{1 - |S_{22}|^2}$$

Assumption:
$$|\Gamma_{in}| = |S_{11}| < 1$$
 and $|\Gamma_{out}| = |S_{22}| < 1$

Unilateral Two-Port, Specific Gain

• The gain is expressed by $G_{TU} = \frac{P_L}{P_{AVS}} = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}\Gamma_S|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$ (Unilateral Transducer Gain) $\max(\alpha_s) = \frac{1}{1 - |\Omega_s|^2}$

note that

• Split up $G_{TU} = \alpha_S |S_{21}|^2 \alpha_L$

$$\max(\alpha_{s}) = \frac{1}{1 - |\mathbf{S}_{1}|^{2}}$$
$$\max(\alpha_{L}) = \frac{1}{1 - |\mathbf{S}_{22}|}$$

• Result:
$$G_{TU} = \frac{\alpha_S}{\max(\alpha_S)} \max(\alpha_S) |S_{21}|^2 \max(\alpha_L) \frac{\alpha_L}{\max(\alpha_L)}$$
$$G_{TU} = \frac{\alpha_S}{\max(\alpha_S)} G_{TUM} \frac{\alpha_L}{\max(\alpha_L)} = g_S G_{TUM} g_L \quad \text{where } \begin{array}{l} 0 \le g_S \le 1\\ 0 \le g_L \le 1 \end{array}$$

- When $g_s = g_L = 1$ only one solution exists: $\Gamma_s = S_1^*$ and $\Gamma_L = S_{22}^*$
- If $g_s < 1$ and $g_L < 1$ there are lot of solutions. Described by circles in the Γ_s -plane and the Γ_L -plane

Unilateral Two-Port, Specific Gain

 $G_{TU} = g_S \times G_{TUM} \times g_L$ For $g_S < 1$ and $g_L < 1$ there are lot of solutions. Described by circles in the Γ_S -plane and the Γ_L -plane

Bilateral Two-Port, Maximum Gain

Maximum gain is achieved when $\Gamma_s = \Gamma_{IN}^*$ and $\Gamma_L = \Gamma_{OUT}^*$ ٠ i.e. apply conjugate match to both input and output

$$\Gamma_{S} = \left(S_{11} + S_{12}S_{21}\frac{\Gamma_{L}}{1 - S_{22}\Gamma_{L}}\right)^{*} \text{ and } \Gamma_{L} = \left(S_{22} + S_{21}S_{12}\frac{\Gamma_{S}}{1 - S_{11}\Gamma_{S}}\right)^{*}$$

- These equations need to be solved simultaneously, ٠ that's why it's called "simultaneous conjugate match"
- **Explicit solution:** ٠

Explicit solution:

$$\Gamma_{SM} = \frac{B_{1} - \sqrt{B_{1}^{2} - 4|C_{1}|^{2}}}{2C_{1}} \text{ and } \Gamma_{LM} = \frac{B_{2} - \sqrt{B_{2}^{2} - 4|C_{2}|^{2}}}{2C_{2}} \text{ where } \begin{cases} \frac{B_{1} = 1 + |S_{1}|^{2} - |S_{22}|^{2} - |\Delta|}{B_{2} = 1 + |S_{22}|^{2} - |S_{11}|^{2} - |\Delta|} \\ \frac{B_{1} = 1 + |S_{11}|^{2} - |S_{22}|^{2} - |\Delta|}{B_{2} = 1 + |S_{22}|^{2} - |S_{11}|^{2} - |\Delta|} \\ \frac{C_{1} = S_{1} - \Delta S_{2}^{*}}{C_{2} = S_{22} - \Delta S_{1}^{*}} \end{cases}$$

NOTE! The solution only exists when the two-port is unconditionally stable, i.e. $|\Delta| < 1$ and K > 1!

Bilateral Two-Port

• At "simultaneous conjugate match" the maximum transducer gain is:

$$\boldsymbol{G}_{TM} = \frac{|\boldsymbol{S}_{21}|}{|\boldsymbol{S}_{22}|} \left(\boldsymbol{K} - \sqrt{\boldsymbol{K}^2 - 1}\right)$$

$$\Delta = \mathbf{S}_{1}\mathbf{S}_{22} - \mathbf{S}_{2}\mathbf{S}_{21} \text{ and } \mathbf{K} = \frac{1 - |\mathbf{S}_{11}|^{2} - |\mathbf{S}_{22}|^{2} + |\Delta|^{2}}{2|\mathbf{S}_{22}\mathbf{S}_{21}|}$$

• With *K* set to 1 the quantity Maximum Stable Gain is derived:

$$G_{MSG} = \frac{\left|S_{21}\right|}{\left|S_{2}\right|}$$

- For conditionally stable two-port, the stability factor *K* may be altered by resistive loading of the input or output without changing the ratio $|S_{21}|/|S_{12}|$.
- But for a conditionally stable two-port
 - it doesn't make any sense to the quantity "maximum transducer gain" and
 - the simultaneous conjugate match doesn't have any solution.
- Therefore, the method changes to case 4 when there is conditional stability.

Bilateral Two-Port

- The procedure will be like this:
- 1. Calculate the "maximum stable gain":

- 2. Back off a few dB or so to set a safety margin.
- 3. Use the reduced gain as specific gain and design according to case 4.
- For conditionally stable two-port
 - may strictly any arbitrary gain be selected
 - but as the gain increases towards G_{MSG} , the risk for self-oscillation escalates
 - G_{MSG} is in this sense the absolute maximum level.

Bilateral Two-Port, Specific Gain

- In the unilateral case it was possible to handle the input and output ports separately.
- BUT at the bilateral case the conditions at the input port depends on the load and vice versa.

$$\Gamma_{in} = S_{11} + S_{12}S_{21}\frac{\Gamma_L}{1 - S_{22}\Gamma_L}$$

$$\Gamma_{out} = S_{22} + S_{12}S_{21}\frac{\Gamma_S}{1 - S_{1}\Gamma_S}$$
Ves it is
Assume conjugate match at one
of the ports and the other is
mismatched to obtain the
specified gain (*G*_T)!

$$G_T = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}\Gamma_S|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - \Gamma_{out}\Gamma_L|^2} = \{\Gamma_L = \Gamma_{out}^*\} = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}\Gamma_S|^2} |S_{21}|^2 \frac{1}{1 - |\Gamma_{out}|^2} = G_A$$

Bilateral Two-Port, Specific Gain

Assume conjugate match at one port and mismatch is applied to the other!

If a mismatch is wanted at the output:

- 1. use "operating gain"
- 2. apply mismatch at the output so that $G_P = G_T$ and solve Γ_L
- 3. conjugate match the input (Γ_{in} known) then $G_P = P_L / P_{IN} = P_L / P_{AVS} = G_T$

If a mismatch is wanted at the input:

- 1. use "available gain"
- 2. apply mismatch at the input so that $G_A = G_T$ and solve Γ_S
- 3. conjugate match the output (Γ_{out} known) then $G_A = P_{AVN}/P_{AVS} = P_L/P_{AVS} = G_T$

$$G_P = \frac{P_L}{P_{IN}} = \frac{1}{1 - |\Gamma_{in}|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$$

$$\Gamma_{in} = \mathbf{S}_{1} + \mathbf{S}_{2}\mathbf{S}_{21}\frac{\Gamma_{L}}{1 - \mathbf{S}_{22}\Gamma_{L}}$$

$$G_A = \frac{P_{AVN}}{P_{AVS}} = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}\Gamma_S|^2} |S_{21}|^2 \frac{1}{1 - |\Gamma_{out}|^2}$$

$$\Gamma_{out} = \mathbf{S}_{22} + \mathbf{S}_{12}\mathbf{S}_{21}\frac{\Gamma_{s}}{1 - \mathbf{S}_{11}\Gamma_{s}}$$

Bilateral Two-Port, Specific Gain

Design by "operating gain"

$$G_P = \frac{1}{1 - |\Gamma_{in}|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$$

can be written as

$$\boldsymbol{G}_{P} = |\boldsymbol{S}_{21}|^{2} \cdot \frac{1 - |\Gamma_{L}|^{2}}{\left(1 - \left|\frac{\boldsymbol{S}_{11} - \Delta \Gamma_{L}}{1 - \boldsymbol{S}_{22} \Gamma_{L}}\right|^{2}\right) |1 - \boldsymbol{S}_{22} \Gamma_{L}|^{2}} = |\boldsymbol{S}_{21}|^{2} \boldsymbol{g}_{P}$$

Can we affect *S*₂₁?

- 1. S_{21}^{+} is known, determine g_P to obtain the wanted gain
- 2. what Γ_L complies with the selected g_P ?
- there are a number of solutions at a circle in the Γ_L -plane

radius:
$$r_{L} = \frac{\sqrt{1 - 2K|S_{12}S_{21}|g_{P} + |S_{12}S_{21}|^{2}g_{P}^{2}}}{\left|1 - g_{P}(|S_{22}|^{2} - |\Delta^{2}|)\right|}$$

centre: $\Gamma_{LO} = \frac{g_{P}C_{L}^{*}}{1 - g_{P}(|S_{22}|^{2} - |\Delta^{2}|)}$

where $C_L = S_{22} - \Delta S_{11}^*$

- 3. select a "smart" Γ_L !
- 4. calculate Γ_{in} and conjugate match the input

Bilateral Two-Port, Specific Gain

can be written as

Design by "available gain"

$$G_A = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}\Gamma_S|^2} |S_{21}|^2 \frac{1}{1 - |\Gamma_{out}|^2}$$

 $\boldsymbol{G}_{A} = \left| \boldsymbol{S}_{21} \right|^{2} \cdot \frac{1 - \left| \boldsymbol{\Gamma}_{S} \right|^{2}}{\left(1 - \left| \frac{\boldsymbol{S}_{22} - \Delta \boldsymbol{\Gamma}_{S}}{1 - \boldsymbol{S}_{11} \boldsymbol{\Gamma}_{1}} \right| \right) \left| 1 - \boldsymbol{S}_{11} \boldsymbol{\Gamma}_{S} \right|^{2}} = \left| \boldsymbol{S}_{21} \right|^{2} \boldsymbol{g}_{A}$

- 1. S_{21} is known, determine g_A to obtain the wanted gain
- 2. what Γ_s complies with the selected g_A ?
- there are a number of solutions at a circle in the Γ_{s} -plane

radius:
$$r_{s} = \frac{\sqrt{1 - 2\mathcal{K} |\mathbf{S}_{2}\mathbf{S}_{21}|\mathbf{g}_{A} + |\mathbf{S}_{2}\mathbf{S}_{21}|^{2}\mathbf{g}_{A}^{2}}}{\left|1 - \mathbf{g}_{A} \left(|\mathbf{S}_{11}|^{2} - |\Delta^{2}|\right)\right|}$$

centre: $\Gamma_{\infty} = \frac{\mathbf{g}_{A}\mathbf{C}_{s}^{*}}{1 - \mathbf{g}_{A} \left(|\mathbf{S}_{11}|^{2} - |\Delta^{2}|\right)}$ where $\mathbf{C}_{s} = \mathbf{S}_{11} - \Delta\mathbf{S}_{22}^{*}$

Bilateral Two-Port, Specific Gain

- If a two-port is conditionally stable:
 1. Calculate stability circles
 - 2. Calculate a gain circle to obtain the wanted G_P , (G_A)
 - 3. Select Γ_L , (Γ_S) at the gain circle in the stable area
 - 4. Calculate Γ_{IN} , (Γ_{OUT})
 - 5. Check if conjugate match is possible
 - i.e. if $\Gamma_S = \Gamma_{IN}^*$ ($\Gamma_L = \Gamma_{OUT}^*$) is located in the stable area
 - if not, return to step 3 and make a new choice
 - alternatively lower the demand for gain

Noise in a Two-Port

• The signal-to-noise ratio $SNR = \frac{P_s}{P_N}$ is deteriorated due to noise power added by the two-port

 The noise factor (F), linear, denotes the increase of noise by the two-port, assumed a source noise temperature of T₀ = 290 K

$$F = \frac{P_{No} + P_{Ni}G_A}{P_{Ni}G_A} \quad \text{but} \quad G_A = \frac{P_{So}}{P_{Si}} \quad \text{leads to} \quad F = \frac{\frac{P_S}{P_{Ni}}}{\frac{P_{So}}{P_{No} + P_{Ni}G_A}} = \frac{SNR_i}{SNR_o}$$

• Alternatively noise figure (*NF*), decibel scale, $NF = 10 \log_{10}(F)$.

Noise in Cascaded Two-Ports

• The total noise factor (remember: linear scale) is

 $F_{TOT} = \frac{\text{total available noise power at the output}}{\text{available noise at the output originating from the source}}$ $F_{TOT} = 1 + \frac{P_{No1}}{P_{Ni}G_{A1}} + \frac{P_{No2}}{P_{Ni}G_{A1}G_{A2}} + \cdots$ Friis' formula: $F_{TOT} = F_1 + \frac{F_2 - 1}{G_{A1}} + \frac{F_3 - 1}{G_{A1}G_{A2}} + \cdots$

NOTE: all variables must be denoted in linear quantities!

ullet

Design of Low Noise Amplifiers (LNA)

- The noise power from a transistor depends on
 - the source impedance
 - the quiescent point (I_C, V_{CE})
- There is an optimum source impedance that gives the minimum noise factor (or figure) for a specified quiescent point
- The source impedance for minimum noise factor does unfortunately NOT coincide with the source impedance for maximum gain

 \rightarrow noise match \Leftrightarrow power mismatch at the input

Design of Low Noise Amplifiers (LNA)

• The noise factor:

Case 5

$$F = F_{min} + \frac{R_N}{G_S} |Y_S - Y_{opt}|^2 \quad \text{where} \quad G_S = \operatorname{Re}[Y_S]$$

- F_{min} the minimum noise factor
- R_N determines how much *F* increases when Y_S deviates from Y_{opt}
- Y_{opt} the source admittance providing F_{min}
- The noise factor denoted by normalised parameters:

$$F = F_{min} + \frac{r_N}{g_S} |y_S - y_{opt}|^2 \quad \text{where} \quad g_S = \operatorname{Re}[y_S]$$

• The noise factor denoted by reflection coefficients:

$$\boldsymbol{F} = \boldsymbol{F}_{min} + \frac{4\boldsymbol{r}_{N} \left|\boldsymbol{\Gamma}_{S} - \boldsymbol{\Gamma}_{opt}\right|^{2}}{\left(1 - \left|\boldsymbol{\Gamma}_{S}\right|^{2}\right) \left|1 + \boldsymbol{\Gamma}_{opt}\right|^{2}}$$

Design of Low Noise Amplifiers (LNA)

- There are a number of Γ_{S} that provides a specified noise factor
- These are found at circles in the Γ_{S} -plane

radius:
$$r_{\rm S} = \frac{\sqrt{N_i^2 + N_i \left(1 - \left|\Gamma_{opt}\right|^2\right)}}{1 - N_i}$$

centre: $\Gamma_{\infty} = \frac{\Gamma_{opt}}{1 + N_i}$
where $N_i = \left(F - F_{min}\right) \frac{\left|1 + \Gamma_{opt}\right|^2}{4r_N}$

Summary of Amplifier Design

- 1. Decide if the transistor is unconditionally stable
- 2. Calculate stability circles if necessary

G_T

- Choose a method for specific or maximum gain
- 4. Assume conjugate match at the input (or the output)
- 5. Calculate a gain circle to obtain the wanted G_P (or G_A)
- 6. Select Γ_L (or Γ_S) at the gain circle in the stable area
- 7. Calculate Γ_{IN} (or Γ_{OUT})

3. Choose the method for specific gain using available gain

 G_T, F

- 4. Assume conjugate match at the output
- 5. Draw noise and gain circles
- 6. Select Γ_S in the stable area that provides a suitable compromise of noise and gain
- 7. Calculate Γ_{OUT}

- 8. Check if conjugate match is possible
 - i.e. if $\Gamma_S = \Gamma_{IN}^*$ ($\Gamma_L = \Gamma_{OUT}^*$) is located in the stable area
 - if not, return to step 6 and make a new choice
 - alternatively lower the demand for gain and return to step 5
- 9. Design the matching networks and verify stability at all frequencies of interest