Lecture 9

• Oscillators
 – Oscillators Based on Feedback
 – Requirements for Self-Oscillation
 – Output Power and Harmonic Distortion
• Tuned LC Oscillators
• Oscillator Noise
• Negative Resistance Oscillators
• Voltage Controlled Oscillators (VCO)
• Resonators
• Crystal Oscillators (XO)
• Some Good Practical Advice about Oscillator Design
Black’s Feedback Model

\[V_{out} = A_v \cdot V_A \]

\[V_A = V_{in} + \beta V_{out} \]

\[A_f = \frac{V_{out}}{V_{in}} = \frac{A_v}{1 - A_v \beta} \]

- Barkhaussen oscillation criteria:

\[A_v \cdot \beta = 1 \quad A_v \cdot \beta \text{ is called the loop gain} \]
Oscillators Based on Feedback

- If the oscillator runs at constant amplitude it complies with the Barkhausen oscillation criteria:

\[A_v \cdot \beta = 1 \]

- i.e.

\[|A_v \cdot \beta| = 1 \]

- and

\[\arg(A_v \cdot \beta) = 0 \]

- \(A_v \) = voltage gain
- \(\beta \) = feedback factor
$A_v \cdot \beta = 1$ when the oscillator runs at constant amplitude.
The Generalized Oscillator Model for LC Oscillators

- The phase criteria in Barkhaussen is fulfilled when
 \[X_1 + X_2 + X_3 = 0 \]
 i.e. the circuit is at resonance

- The amplitude criteria in Barkhausen is fulfilled when
 \[\beta = \frac{1}{A_v} = \frac{X_1}{X_1 + X_3} = \frac{X_1}{-X_2} = \frac{X_2 + X_3}{X_2} \]

Tip: choose an expression for \(\beta \) where both reactance's are inductive or capacitive
Oscillator Circuits

- The feedback network in LC oscillators may be configured in different ways:
 - Hartley
 - Colpitts
 - Clapp

- Hartley:
 - one capacitive branch
 - two inductive branches

- Colpitts:
 - two capacitive branches
 - one inductive branch

- Clapp:
 - a variation of the Colpitts oscillator

Depending on the selected transistor configuration (CE, CB or CC) there are a lot more variations.

Johan Wernehag, EIT
1. determine the amplifier configuration (CE, CB or CC)?

2. identify components that determines the frequency and feedback?

3. draw the generalized oscillator model

4. calculate the voltage gain A_V

5. calculate the resonant frequency f_0

6. calculate the feedback factor β

7. check if the Barkhaussen criteria is fulfilled
Calculation of A_V and β

\[A_v \cdot \beta = 1 \]

\[A_v = g_m \cdot R_{ctot} \]

\[R_{ctot} = R_p // R_L // R_n // r_o \]

\[R_p = Q_u \cdot \omega_0 L \]

\[R_n = \left((r_e // R_3) + R_4 \right) \cdot \left(\frac{C_3 + C_4}{C_3} \right)^2 \]

\[\beta = \frac{(r_e // R_3)}{(r_e // R_3) + R_4} \cdot \frac{C_3}{C_3 + C_4} \]

compare with lab 4!
Oscillator Noise

- The noise level increases close to the resonant frequency as $A_f \to \infty$ when $f \to f_0$

$$A_f = \frac{A}{1 - \beta A}$$
Noise Model of the Oscillator

\[N_i = FkT_0 \text{[W/Hz]} \]

\[A_f(f) = \frac{A}{1 - \beta(f)A} \]

\[G_f = A_f^2 \]

\[\beta(f) = \frac{\beta_0}{1 + jQ\frac{2|f - f_0|}{f_0}} \]

\[N_0 = G_f FkT_0 \text{[W/Hz]} \]

\[N_i = FkT_0 \text{[W/Hz]} \]
Noise Spectrum

To achieve low phase noise choose:
- a high-Q resonant circuit
- a low noise amplifier
- as low gain as possible
- high power level in the oscillator

The noise consists of both amplitude and phase noise
- if a limiter is used the amplitude noise will be suppressed and the total noise level is reduced by 3 dB
Negative Resistance Oscillators

Lab 4

Which transistor configuration is used?

A serial inductor (a short-circuited stub) is inserted to the base to intentionally make the transistor unstable.

A resonator (an open stub) is connected to the input to set the resonant frequency.

V_C = 3.5V
Negative Resistance Oscillator

Lab 4

![Circuit Diagram]

$V_{CC} = 3.5V$

$Z_0 = 100\Omega$
$\ell = 0.05\lambda$

$Z_0 = 100\Omega$
$\ell = 0.125\lambda$

BFR520

270pF

50Ω

470pF

2.7kΩ

470pF

270pF

100Ω

270pF

50Ω

stub

out

b
c

+3.5V

RFosc LS991102

Johan Wernehag, EIT
Conditions for Oscillation in a Two-Port

\[K = \frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{12}S_{21}|} < 1 \]

\[\Delta = S_{11}S_{22} - S_{21}S_{12} \]

\[\Gamma_{IN}\Gamma_S = 1 \]

\[\Gamma_{UT}\Gamma_L = 1 \]

Express this in impedance!

\[\Gamma_{IN}\Gamma_S = \frac{R_{IN} + jX_{IN} - Z_0}{R_{IN} + jX_{IN} + Z_0} \cdot \frac{R_S + jX_S - Z_0}{R_S + jX_S + Z_0} = 1 \]

\[R_{IN} + R_S = 0 \]

\[X_{IN} + X_S = 0 \]
Voltage Controlled Oscillator (VCO)

Clapp oscillator

Negative resistance oscillator

Johan Wernehag, EIT
Varicap Diode

Forward bias

Reversed bias

Ex.: BB811

Diode capacitance $C_d = f(V_R)$

$f = 1 \text{ MHz}$

$C_d(V_R) = \frac{C_j(0)}{\left(1 + \left|\frac{V_R}{V_j}\right\right)^M}$

$V_R = \text{reverse voltage}$

Johan Wernehag, EIT
Resonators

• In order to improve the Q-factor, instead of or as a compliment to the LC circuit, you may use:

 – Transmission line
 • microstrip resonator
 • coaxial resonator

 – Ceramic resonator

 – Quartz crystal
The Quartz Crystal (Xtal)

Symbol

equivalent circuit diagram

\[L = 5 \, \text{mH} \]
\[C_p \approx 10 \, \text{pF} \]
\[C_s \approx 50 \, \text{fF} \]
\[r < 3 \, \Omega \]
\[Q \approx 10^5 \]
The Impedance of a Crystal

\[Z_{\text{Xtal}}[\Omega] = R + jX \]

Series resonant frequency
Parallel resonant frequency

\[Z \rightarrow r(Q^2 + 1) \]

\[X \rightarrow \infty \]

\[X \rightarrow -\infty \]
Crystal Oscillators

- circuit examples

- series resonance
- parallel resonance
- parallel resonance

Johan Wernehag, EIT
Pierce Crystal Oscillator

Compare with lab 4!
Some Good Practical Advice about Oscillator Design

• Generally:
 – select components of high quality
 – use buffer amplifier
 – use filtered and well stabilized supply voltage
 – apply good shielding

• For high frequency stability:
 – design the resonant circuit for high Q
 – use a ceramic resonator alternatively a quartz crystal
 – ”pre-aging” of crystals
 – the oscillator may be enclosed in a temperature controlled oven
 – frequency control by temperature sensor and varicap diode

• Low phase noise:
 – design the resonant circuit for high Q
 – use low noise amplifier
 – use as low gain as possible
 – let the oscillator operate at a high power level