
Department

of

Electrical and Information Technology

DSP-Design:

 Laboratory Manual Lab 3 & Lab 4

Lab 3

Effects of fixed-point
implementation in DSP

algorithms

This session deals with effects that arise when mapping a DSP algorithm onto a
fixed-point computation platform. In a hardware design flow one usually creates
such a fixed-point model and compares it against a floating-point model in order
to estimate the complexity and computation effort of datapaths for a desired per-
formance. As an example, the performance of a Finite Impulse Response (FIR)
filter will be characterized and estimated in terms of its wordlength, area, and
speed. Since this session will be done in MATLAB, some important commands
appear on the margin of a page. You can get more information on these command name

and other functions by typing help and the respective command name

in the MATLAB command window. cmr

In order to pass the lab sessions, you have to accomplish the listed

compulsory assignments before the respective session

It is also highly recommended to try to solve the programming parts beforehand
since this improves the use of the lab. This manual also tries to give you some
introduction to the basic commands and techniques to be used.

1.1 FIR filters

Based on difference equations, the output of a discrete Linear Time-Invariant (LTI)
system in the time domain can be described as

y(n) =

m
∑

i=0

bix(n− i)−

l
∑

j=1

ajy(n− j). (1.1)

Such a system is called Infinite Impulse Response (IIR) filter. Removing the feed-
back part of this system by setting l = 0, it follows that the current output only
depends on the current input and its delayed samples. However, in order to achieve
the same performance, such a filter needs a higher order compared to the system

25 1

26

described by (1.1). Note that a higher filter order results in a larger delay.

y(n) =

m
∑

i=0

bix(n− i) ≡

m
∑

i=0

hix(n− i) (1.2)

The system is of order m and non-recursive. Its impulse response h = {h0, . . . , hm}
is limited to m+ 1 taps and systems of this type are called FIR filter.

FIR filters are always stable and they can be designed to have linear phase, that
is, the group delay time is constant. Then, the phase of an input signal will not be
distorted when passing through the filter. A block diagram of (1.2) in direct form
is shown in Figure 1.1.

y(n)

z−1 z−1z−1x(n)

h0 hmh1

Figure 1.1: FIR filter in direct form.

Doing a graph transposition on the preceding architecture, that is, reversing the
direction of all edges, exchanging the input and output nodes while keeping the edge
delay the same, yields another realization of an FIR filter, namely the transposed
or data-broadcast structure (Figure 1.2).

z−1 z−1 z−1 y(n)

x(n)

h1hm h0

Figure 1.2: FIR filter in transposed form, data-broadcast.

When it comes to implementation in hardware, area and speed are important
constraint parameters. In this case, area primarily depends on the wordlength that
has to be used for the different arithmetic units to maintain accuracy. Speed can
be measured in terms of the longest path between any two delay elements, called
critical path.

1.2 Real-life considerations

1.2.1 Calculating the transfer function

In order to understand the following considerations about transfer functions, we
will need

Definition 1 Discrete Fourier Transform (DFT)

X(k) =
N−1
∑

n=0

x(n)e−j2πkn/N = DFT{x(n)} (1.3)

The transform X consists of N elements, that is, X = {X(0), . . . , X(N − 1)}.

 2

27

Generally, transfer function H and impulse response h are two ways of describing
an LTI-system. The first description is used in the frequency domain, the latter in
the time domain. Together with the preceding definition, it is seen that these two
descriptions are connected for discrete-time systems by the DFT:

DFT{hn} = H(k).

As mentioned in the introduction, implementing an algorithm on a hardware plat-
form will always result in performance degradation due to finite wordlength in the
computation units. Generally, an analog input signal has to be sampled and quan-
tized before it can be processed by a digital circuit. For our example we assume
that we receive samples in 2’s complement coded with win bits.

A D

AD win wout

Ĥ

H
X Y

Figure 1.3: Block diagram of a common DSP system.

Seen from a system’s perspective, introducing nonlinear elements, such as A/D-
and D/A-converters, makes the original linear system with transfer function H

into nonlinear system Ĥ (Figure 1.3). Hence, Ĥ can only be an estimation of the
expected system transfer function since it depends on the respective input stream
and the precision used for the converters. Due to absence of linearity,

Y (k) 6= H(k)X(k).

However, given a certain X, win, and wout, this configuration resembles one certain
realization Ĥ of the transfer function H. This realization is linear itself and we can
assume that

Y (k) = Ĥ(k)X(k)

holds.
Now, let x(n) and hn be finite sequences with length L and M , respectively.

Then, the output sequence y(n) of an FIR filter is defined by (1.2), wherem = M−1,
and its length is L+M − 1. This operation corresponds to a convolution of x with
h. conv

The frequency domain equivalent to (1.2) is

Y (ω) = H(ω)X(ω).

Notice that this spectrum is continuous. In order to represent y(n) uniquely in the
frequency domain at a set of discrete frequencies, the number of DFT samples N
must be at least N ≥ L+M − 1. Hence,

Y (k) = Y (ω)
∣

∣

ω=2πk/N = H(ω)X(ω)
∣

∣

ω=2πk/N

= H(k)X(k).

Note that the sequences hn must be padded with zeros to increase its length to N
in order to calculate the transfer function Ĥ.

Ĥ(k) =
Y (k)

X(k)

If the number of frequency points is a power of 2, (1.3) can be carried out as Fast fft

Fourier Transformation (FFT), which is more computation efficient. Otherwise the
sequences can always be padded with zeros to achieve this requirement.

 3

28

1.2.2 Errors due to finite wordlength arithmetic

The real frequency response of an FIR filter differs from the ideal one due to:

• Quantization of the filter coefficients ⇒ linear error

• Truncation of partial products ⇒ nonlinear, random error

Algebraically, (1.2) can be seen as multiplication of two vectors h and x, and ac-
cording to the first consideration, the impulse response h can now be written as hq,
with hq being the quantized impulse response. Hence, the error due to coefficient
quantization is

∆y = h · xT − hq · x
T =

m
∑

i=0

(hi − hi,q) · xi =
m
∑

i=0

∆hi · xi.

This error is linearly dependent on the input stream and thus causes only linear
distortion. The filter can therefore be modeled as depicted in Figure 1.4.

y(n)

hq

∆h

x(n)

Figure 1.4: Model of an FIR filter with quantized coefficients.

The second error source depends on how the wordlength of partial products is
adjusted when maximum accuracy cannot be kept throughout processing. One can
either truncate or round a number to maintain a certain wordlength. Obviously,round

truncating a number in hardware is easier than rounding, where additional logic hasfloor

to perform a comparison. However, even if you keep the required accuracy in your
calculations, you have to truncate the result before the following D/A-converter,
since this stage can only handle a certain precision wout, usually between 8 and 16
bits.

Notice that these two errors can be handled quite easily in non-recursive sys-
tems since they are stable by definition. In recursive systems, however, instable
behavior can be introduced by improper quantization and/or scaling approaches,
see Section 1.4.

How do you truncate at the output?

The calculation in assignment ④ now comes into play. The expected result has got
a wordlength that differs from the theoretical one (w) that considers the worst case
where all taps of the impulse response are 1. Since the impulse response is usually
known in advance, clipping can be done according to Figure 1.5.

wdyn − 1

wout

0w − 1

Figure 1.5: Dynamic range of the output result.

This improves the performance compared to a truncation starting from w − 1
because there is no information in the upper range; the result has only a certain

 4

29

dynamic range determined by wdyn, where

wdyn(h) ≤ w.

However, this operation certainly removes information from the signal (the Least
Significant Bits (LSBs) are lost!) and therefore this system will behave somewhat
different compared to an ideal implementation.

Compulsory assignments

① Given an FIR filter order m, compare the presented architectures with regard
to area and speed according to the given remarks.

• Which wordlength is required in the adders, multipliers, and registers in
these approaches if full precision is required? Assume that the wordlength
of the input and the coefficients are win and wc, respectively.

• Determine the critical path computation time Tcrit as a function of Tadd

and Tmult.

② Find and draw another architecture that overcomes to some extent the main
disadvantage of the direct form. Compare it to the previous designs. Where
is the improvement?

③ Can you think of another solution to improve the direct form? What is the
drawback?

④ Given an impulse response h, express the required dynamic wordlength wdyn

at the output as function of hi, win, and m. Assume that numbers in this
implementation are represented as integers in 2’s complement1.

⑤ The impulse response of a linear-phase FIR filter has a special property. Which
one? Improve the architectures in Figure 1.1 and 1.2 by making use of this
property.

⑥ You should be able to explain the working of the following commands

• floor

• round

• fir1

• fft

• abs

• plot

• angle

• conv

You may use help command name in the MATLAB prompt to know more
about each command.

⑦ In this assignment you should write some initial matlab code. The code

should have been tested before the lab session. Design a lowpass filter
with a cutoff frequency of 0.1 and using the fir1 command and plot the
impulse response h. Show the filter’s frequency response, both magnitude (in
dB) and phase. Use a filter order of your choice.

The transfer function can be obtained by applying an FFT to the filter coeffi-
cients (command in MATLAB: fft). The magnitude of the transfer function
can be calculated as

1A number in 2’s complement covers the range [−2w−1, 2w−1
− 1].

 5

30

20*log10(abs(H)+(H==0)*eps);

where H is the output of the FFT and (H == 0) ∗ eps suppresses warnings
that would result from taking the logarithm of zero. The phase response is
calculated using

unwrap(angle(H));

1.3 During the lab

Start MATLAB in a new directory where you write the script files for the lab.
Throughout the lab, use these script files for execution and displaying the outputs.

1.3.1 Algorithm simulation

When designing a (digital) filter you have to know some parameters beforehand.
According to the sampling theorem, the sampling frequency fs of a system has to
be at least two times the maximum signal frequency. Hence, possible filter bands lie
within 0 < f < fs/2. Normalizing a desired cutoff frequency fc to the sampling rate
yields 0 < fc < 1/2, with fc = f/fs. Another parameter that mainly determines
the performance of the filter is its order m. As a rule of thumb, the higher the
order, the better the performance but the more expense in computation.

1.3.2 Lab assignments

The lab session guides you through the following steps (Figure 1.6) that are crucial
in designing a digital filter and estimating performance losses upon implementation
in hardware.

MATLAB

Fixed-point Fixed with

A/D & D/A

Floating-point

coefficients coefficients

Figure 1.6: Steps in the lab session.

Start with the floating point model that MATLAB provides. Desired filter spec-
ifications are set and real-numbered coefficients are obtained. Then, the coefficients
are quantized, and finally, effects from input and output signal quantization are
simulated.

❶ Design a lowpass filter with a cutoff frequency of 0.1 and filter order m ∈fir1

{7, 15, 31} and plot their magnitude (in dB) and phase responses . When youfft

angle

unwrap
use filters of different orders m, what can you say about the performance?

❷ Now, quantize the real valued coefficients of the filter from the previous as-
signment to wc bits and plot the respective transfer functions. Try different
wc to see the effects of different precisions. In order to fully exploit the dy-
namic number range, it is advisable to normalize the impulse response to avoid
the chances of overflow. The filter coefficients obtained from fir1 is already
scaled so the center of the first pass band has magnitude exactly one after
windowing. When you plotted the transfer functions, elaborate on what you
see.

 6

31

Normalization of a vector x with respect to its maximum absolute value is
done by

x/max(abs(x));

Quantization of the coefficients to w bits is done by a multiplication, followed
by a rounding, and a division.

y=x*2(̂w-1); z=round(y); x=z/2(̂w-1);

❸ We will now try to verify the model in Figure 1.4. If we account for the
error introduced by quantization, the output should be same as the one when
calculated with full precision. To check this you have to show the difference
between the two outputs. y = h ∗ x is the output with full precision. Here, ∗
denotes a convolution! ys = hq ∗ x+∆h ∗ x will be the output as calculated conv

from Figure 1.4, that is, taking into account the error introduced during the
quantization process. What should the difference between the outputs (y−ys)
be? Does the simulation confirm your assumption?

The input stream is provided in input.dat and has to be read into the variable
x before calculating y and ys. Loading the variable can be done with

x=dlmread(’input.dat’, ’ ’);

What has been seen are the linear errors due to coefficient quantization. However,
what is left to do is to look at effects that arise from the truncation of computation
products. Furthermore, the input samples are also wordlength-limited and have to
be taken into account in the overall model as well.

❹ Do an A/D-conversion of x with win = 8 bits.

x temp=x*2(̂w-1); x temp2=floor(x temp); x q = x temp2/2ŵ-1

Filter this signal with the quantized (wc = 8) impulse response (h q) of the
previous filter (m = 31). Then truncate the result to the output wordlength
i.e., wout = 9 . In other words, you have to convolve x q with the quantized
impulse response h q.

y q = conv(h q,x q);

❺ Now, plot the transfer function H = Y./X, where Y is the fft of the trun-
cated output stream (y q from ❹) and X the fft of the input stream from
input.dat. What is different compared to the original transfer function that
was obtained in ❶. Note that transfer functions of same filter order are to be
compared

1.4 Finite wordlength issues in IIR filters

In this section you will simulate the effects of a parasitic oscillation, namely the
zero-input oscillation, which is due to finite wordlengths in IIR filters.

In an IIR filter the data wordlength increases when a signal is multiplied by a
coefficient and would therefore become infinite in a recursive loop. Hence, quanti-
zation, that is, truncation or rounding to the original wordlength, is necessary. This
quantization is a nonlinear operation in recursive algorithms.

 7

32

z−1 z−1

x

y

a2a1

Figure 1.7: Direct form structure of an IIR filter.

❼ Apply the sinusoidal signal

x(t) =

{

−0.1 · sin(2π · t), 0 ≤ t ≤ 1.25

0, otherwise

to the direct form IIR filter depicted in Figure 1.7. Filter this signal with the
tap set b = 1, a = [a0, a1, a2] = [1,−489/256, 15/16] and using the filter

function. Plot both the input and output stream in one picture.

❽ Now, demonstrate by simulation that zero-input oscillations occur when you
quantize the outputs of the two multipliers of the filter in Figure 1.7 to 6
bits (2’s complement). Try both with truncation and rounding and plot the
two resulting output streams in one figure together with the input stream.
HINT: In order to quantize the multiplier outputs the entire filter

has to be expressed as an equation.

• What is the amplitude of the oscillation in the rounded version in terms
of the quantization level Q = 1/25?

• What is the DC offset in the truncated version?

• Observe what happens to the output when you have different step sizes
while constructing the signal x(t). For example, if the step size is 0.01
and 0.001. What could be the reason?

 8

	Effects of fixed-point implementation in DSP algorithms
	FIR filters
	Real-life considerations
	Calculating the transfer function
	Errors due to finite wordlength arithmetic

	During the lab
	Algorithm simulation
	Lab assignments

	Finite wordlength issues in IIR filters

	Architectural considerations in a HW implementation
	Purpose
	Hardware-mapped vs. time-multiplexed
	From Design to Implementation
	ASIC
	FPGA

	Hardware Behavioral Description
	What to do?
	Project initialization
	FIR time multiplexed
	FIR Unfolded
	FIR Pipelined
	Architecture Comparison
	Fixed multipliers

