
12. (a) Considering the two critical paths A-C-E-G and B-D-F-H, the
maximum sample rate becomes fs = 1/4T .

(b) According to Figure 1, 9 additional registers are needed.

(c) Keeping only the cutset in the middle, only 4 registers are required
and the sample rate becomes fs = 1/2T , that is, one trades area for
throughput.
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Figure 1: Feedforward cutsets in a DFG.

13. (a) The critical path is 10 t.u. and is shown bold in Figure 2.

(b) The pipelining cutsets are shown dashed in the figure. There is an
overhead of 9 registers. The lowest achievable clock period would be
T∞ = 1.5.
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Figure 2: Digital IIR filter with critical path and cutsets.

14. (a) The pipeline is shown in Figure 3.

(b) In the algorithm, substitute n with 3k, 3k + 1, and 3k + 2. The
3-parallel filter is shown in Figure 4. The pipeline achieving a clock
period of T is shown dashed and the sample rate is 3/T .

(c) A pipeline to achieve a critical path of T/2 is applied to the multi-
pliers (fine-grain pipelining) since these units are the critical factor.
The sample rate is now 6/T .

15. (a) The pipelined filter is shown in Figure 5(b).

(b) First slow down the filter by replacing the 2-delay with a 4-delay, thus
there appears an idle cycle in every two cycles. These idle cycles are
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Figure 3: Pipeline in an FIR-filter.
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Figure 4: 3-parallel FIR filter.

used to operate v(n). The scheduling is shown in Table 1 and the
respective architecture in Figure 6.
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Figure 5: The original filter (a) with a multiply-add (MA) unit. In (b), the
pipelined version is shown.

16. See pages 9–11 from the lecture about pipelining and parallel processing.
Although only switching power consumption is considered in the following



Table 1: Scheduling of data, v, y are idle samples.
1 2 3 4 5 6

Input u(1) v(1) u(2) v(2) u(3) v(1)
Output x(1) y(1) x(2) y(2) x(3) y(1)
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MA2
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Figure 6: Pipelined structure of the 2-slow IIR filter.

assignments, leakage power becomes increasingly important as technology
shrinks.

17. (a) See page 12 from the lecture about pipelining and parallel processing.

(b) Given M = 7/4, the power ratio β can be derived from

M(βVdd − Vt)
2 = β(Vdd − Vt)

2

18. As required, both filters have equal clock periods, thus

Cch,a · Vdd,a

k(Vdd,a − Vt)2
=

Cch,b · Vdd,b

k(Vdd,b − Vt)2

Knowing that (a) has Tcrit = 9Tadd and (b) Tcrit = 4Tadd, one can write

Vdd,b (Vdd,a − Vt)
2

Vdd,a (Vdd,b − Vt)2
=

Cch,a

Cch,b
= 9/4.

Solving for Vdd,b, one yields an expression for the saved power according
to

1−
V 2
dd,b

V 2
dd,a

.

19. This assignment is best solved by writing a program that calculates β2 for
different values of M . One should end up with an optimal pipeline level
of M = 13, which gives a supply voltage of 1.0929V and β2 = 82.83%.

20. Given a pipelining level of M = 4 and block size L = 4, we get

16 (βVdd − Vt)
2 = β(Vdd − Vt)

2.

Solving for β gives a power ratio of β2 = 3.12%.

21. By simply writing out the equations, one should arrive at the same algo-
rithmic structure.



(a) For a general L-parallel filter, one has L2 subfilters of length N/L,
N number of taps. Therefore, the total number of multiplications
and additions is LN and L(N − 1), respectively. Since every arith-
metic operation is duplicated, the complexity per sample compared
to the original non-parallelized filter stays the same. For the fast-
FIR approach, there are only (2L− 1) subfilters of length N/L, and
the number of mults and adds are reduced to only (2N −N/L) and
(2L−1)(N/L−1)+2L. Therefore, the complexity per sample is also
reduced when comparing it to the original form.

(b) The critical path of the decomposed form has the same properties as
that of the original filter since it is only a duplication of operations.
The fast-FIR filter, though, has got an increased critical path due to
pre- and postprocessing operations.

(c) See (a).
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Figure 7: Retimed and pipelined wave digital filter structure.

22. The 2-parallel FIR filter is expressed in post-, pre-, and diagonal matrices
are expressed as follows:

Y2 = Q2H2P2X2,

where

(
Y0

Y1

)
=

(
1 0 z−2

1 −1 1

)
diag

⎛
⎝ H0

H0 −H1

H1

⎞
⎠

⎛
⎝1 0
1 −1
0 1

⎞
⎠(

X0

X1

)
.

By transposing the matrices, another 2-parallel structure is obtained.

Y2F = (Q2H2P2)
TX2F = PT

2
HT

2
QT

2
X2F

where the subscript F denotes a matrix with flipped elements. Therefore,

(
Y1

Y0

)
=

(
1 1 0
0 −1 1

)
diag

⎛
⎝ H0

H0 −H1

H1

⎞
⎠

⎛
⎝ 1 1

0 −1
z−2 1

⎞
⎠(

X1

X0

)
.

23. Apparently, the tap multipliers can be reused, just as in the case of a
symmetric FIR-filter. In the case of the 2-parallel fast-FIR filter, one can
consider the following 3 subfilters.

h0 = {a, 0, c} h1 = {b, b, c} h1 − h0 = {b− a, b, 0}

The goal here is to achieve as many zero taps as possible in the superpo-
sitioned subfilter.

D



24. (a) The iteration bound is (Tmult + 2Tadd)/2= 18 ns.

(b) The critical path is 2(Tmult + 3Tadd)= 88 ns.

(c) See Figure 7 for the modified architecture. Note that the multipliers
were split into two operations.


