Assignments

1.
2. (a) Resolution $=1 / 2^{6} \mathrm{~V}=0.015625 \mathrm{~V}$
(b) Full scale dynamic range $=0.1 \mathrm{~V} \cdot 2^{6}=6.4 \mathrm{~V}$
3. $\quad 0010.1101=2.8125$

- $1011.0011=-4.8125$
(a) Truncation at the binary point results in 2 and -5 , respectively.
(b) For rounding, add the bit right next to binary point, which yields 3 and -5 , as expected.
(c) DC errror, that is, a mean value not equal 0 , appears due to truncation which always rounds towards $-\infty$, hence there is a constant offset.
(d) Left-extension with MSB does not change a 2's complement number.

4. The calculations are
$\left.\begin{array}{llllll} & 0 & 1 & 0 & 1 & 1 \\ + & 0 & 1 & 1 & 0 & 1 \\ \\ \hline 1 & 1 & 0 & 0 & 0 & \text { Outside range } \\ + & 1 & 0 & 1 & 1 & 1\end{array}\right)$

Overflows in a calculation chain are not important as long as the expected result lies inside the number range.
5. Safe scaling is applied to avoid internal overflows in digital filters.
(a) $\beta=\sum_{i=0}^{4}\left|h_{i}\right|=1.5$, that is, choose a power of two which is greater than β, for example, $\tilde{\beta}=2$. Then the multiplication by $1 / \tilde{\beta}$ can be done with a left-shift.
(b) The coefficients for the FIR filter are symmetric and thus multipliers can be reused, see slides from the lecture.
(c) The number of multiplications is reduced by $\left\lfloor\frac{m+1}{2}\right\rfloor$.
(d) Change signs when superposing the contents of the shift register before multiplication.
6. Let $u(n)=\sigma(n)$, for $n=0, \ldots, \infty$.

$$
\begin{aligned}
x(0) & =1 \\
x(1) & =1+a \\
x(2) & =1+a(1+a)=1+a+a^{2} \\
x(3) & =1+a\left(1+a+a^{2}\right)=1+a+a^{2}+a^{3} \\
& \vdots \\
x(n) & =\sum_{i=0}^{n} a^{i} \stackrel{n \rightarrow \infty}{=} \frac{1}{1-a}
\end{aligned}
$$

For safe scaling, consider the system's impulse response, that is, $u(n)=$ $\delta(n)$.

$$
\begin{aligned}
x(0) & =1 \\
x(1) & =a \\
x(2) & =a^{2} \\
\vdots & \\
x(n) & =a^{n}
\end{aligned}
$$

to yield the scaling factor $\beta=\sum_{i=0}^{\infty}\left|a^{n}\right|=\frac{1}{1-|a|} \geq 1$. Alternatively, one can use the \mathcal{Z}-transform to yield

$$
\begin{aligned}
& X(z)=U(z)+a z^{-1} X(z) \\
& X(z)=\frac{1}{1-a z^{-1}} U(z)=\frac{z}{z-a} U(z) \stackrel{U(z)=1}{=} \\
&=\frac{z}{z-a} \bullet \bullet a^{n}= x(n)
\end{aligned}
$$

7. (a) On the original SFG, change edge directions and exchange input and output.
(b) Either one simply writes out the equations or one can use the \mathcal{Z} transform on the original convolution. Then

$$
\begin{aligned}
Y(z) & =\sum_{i=0}^{4} h_{i} X(z) z^{-i} \\
& =X(z)\left[h_{0}+z^{-1}\left(h_{1}+z^{-1}\left(h_{2}+z^{-1}\left(h_{3}+z^{-1} h_{4}\right)\right)\right)\right]
\end{aligned}
$$

which represents the transposed form.
(c) Again, simply write out the equations and note the increase in latency.
8. (a) The iteration bound T_{∞} is the fundamental limit on how fast a recursive DFG can be implemented in HW, $T_{\infty}=\max _{l \in L}\left\{\frac{t_{l}}{w_{l}}\right\}$.
(b) There are two loops, A1-A2-M2 and A1-A3-M1-A2-M2, with loop bounds 4 and 3.5 , respectively. Iteration bound is the larger of the two, that is, 4.
(c) Transposition is done as usual. Re-inspection of the iteration bound on the transposed filter gives the same result, that is, the bound is characteristic for an algorithm, not a specific implementation.
9. (a) There are 6 loops in this architecture. The iteration bound is the maximum of the loop bounds, that is,

$$
\begin{gathered}
T_{\infty}=\max \left\{\frac{3 T_{\text {add }}+2 T_{\text {mult }}}{1}, \frac{T_{\text {add }}+T_{\text {mult }}}{1}, \frac{5 T_{\text {add }}+2 T_{\text {mult }}}{2}\right. \\
\left.\frac{5 T_{\text {add }}+T_{\text {mult }}}{3}, \frac{3 T_{\text {add }}+T_{\text {mult }}}{2}\right\}=3 T_{\text {add }}+2 T_{\text {mult }}
\end{gathered}
$$

(b) The critical path is $4 T_{\text {add }}+2 T_{\text {mult }}$.
10. The critical path is either $\mathbf{d} \mathbf{- f} \mathbf{- a} \mathbf{- b}$ or $\mathbf{d}-\mathbf{e}-\mathbf{c}-\mathbf{b}$, which both take 5 t.u. There are 4 loops in this graph, that is, $\mathbf{a - b}, \mathbf{b - c}, \mathbf{c - d}-\mathbf{e}$, and $\mathbf{a}-\mathbf{b}-\mathbf{c}-\mathbf{d}-\mathbf{f}$. Their loop bounds are $1,3,4 / 3$, and $7 / 4$, respectively, that is, $T_{\infty}=3$.
11. The iteration bound is $7 / 2$. Good luck with the program.

