DSP Design - Lecture 6

Unfolding

Dr. Fredrik Edman

fredrik.edman@eit.lth.se

Retiming

$$
\text { Loop bound }=\frac{\boldsymbol{T}_{\boldsymbol{j}}}{\boldsymbol{W}_{\boldsymbol{j}}} \text { loop computation time }
$$

Retiming does not change

- delay in loop
- the iteration bound

Critical path $=4$ Loop bound =6/2=3

Critical path $=6$ Loop bound $=6 / 2=3$
...but it changes the critical path!

Retiming Formulation

$$
\begin{aligned}
& \omega(e)=\text { weight of edge } e=\# \text { of delays } \\
& r(x)=\text { retiming values }
\end{aligned}
$$

$r(v)=\#$ of delays transferred from outgoing edges to incoming edges of node v with $w(e)=$ \# of delays on edge e
$w_{r}(e)=\#$ of delays on edge e after retiming
$\omega_{r}(e)=\omega(e)+r(V)-r(U)$
Valid retiming if all $\omega_{r}(e) \geq 0$ for all edges!
Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.lth.se

Cutset Retiming

Cutset: A set of edges that if removed, or cut, results in two disjoint graphs.

Cutset Retiming
Add k delays to edges going one way and remove k delays from ones going the other.

Slow Down by k

Replace each D by kD
(1)

Clock	
$\mathbf{0}$	$\mathrm{A} 0 \rightarrow \mathrm{~B} 0$
$\mathbf{1}$	$\mathrm{~A} 1 \rightarrow \mathrm{~B} 1$
$\mathbf{2}$	$\mathrm{~A} 2 \rightarrow \mathrm{~B} 2$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{clk}}=2 \mathrm{t} . \mathrm{u} \\
& \mathrm{~T}_{\mathrm{iter}}=2 \mathrm{t} . \mathrm{u}
\end{aligned}
$$

After 2-slow transformation

Clock	
$\mathbf{0}$	$\mathrm{A} 0 \rightarrow \mathrm{~B} 0$
$\mathbf{1}$	
$\mathbf{2}$	$\mathrm{~A} 1 \rightarrow \mathrm{~B} 1$
$\mathbf{3}$	
$\mathbf{4}$	$\mathrm{~A} 2 \rightarrow \mathrm{~B} 2$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{clk}}=2 \mathrm{t} . \mathrm{u} \\
& \mathrm{~T}_{\text {iter }}=2 \times 2 \mathrm{t} . \mathrm{u} \\
& =4 \mathrm{t} . \mathrm{u}
\end{aligned}
$$

- Input new samples every alternate cycles.
- null operations account for odd clock cycles.
- Hardware utilized only 50% time

Unfolding Chapter 5

Unfolding

- Unfolding is a structured way to achieve parallel processing
- Unfolding creates a program with more than one iteration
- J is called the unfolding factor

Applications

- Reveal hidden concurrencies so that the program can be scheduled to a smaller iteration period \boldsymbol{T}_{∞}
- Parallel processing
- Bit-serial and Digit-serial

Unfolding in software is called "loop unrolling" or "loop unwinding"

- assembly programming
- compiler theory

Example: Loop unrolling + Software Pipelining

cc oper				
1	1	1		
2	2	1	2	
3	3	1	2	3
5	1		2	3
6	2			3
7	3			
8	1			

GSM Speechcoder

- Org. C-code = 250k cc
- Mod. C-code = 90k cc
- Hand Opt. = 50k cc

\square Iteration 1	\square Iteration 3
\square Iteration 2	\square Higher order
Iterations	

Example: Loop unrolling

Example: A procedure in a computer program is to delete 100 items from a collection.
This can be accomplished by means of a for-loop which calls the function delete(item_number) 100 times.

If this part of the program is to be optimized, and the overhead of the loop requires significant resources compared to those for the delete(x) loop, unwinding can be used to speed it up as shown below.

Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.Ith.se

Unfolding \equiv Parallel Processing

2-unfolded

$$
\begin{aligned}
& A_{0} \rightarrow B_{0}=>A_{2} \rightarrow B_{2}=>A_{4} \rightarrow B_{4}=>\ldots \ldots \\
& A_{1} \rightarrow B_{1}=>A_{3} \rightarrow B_{3}=>A_{5} \rightarrow B_{5}=>\ldots .
\end{aligned}
$$

2 nodes \& 2 edges \& 2 delays

$$
\mathrm{T}_{\infty}=(1+1) / 2=1 \mathrm{ut}
$$

4 nodes \& 4 edges \& 2 delays

$$
\mathrm{T}_{\infty}=2 / 2=1 \mathrm{ut}
$$

- In a ' J ' unfolded system each delay is J-slow \Rightarrow if input to a delay element is $x(k J+m) \Rightarrow$ the output is $x(J(k-1)+m)=x(k J+m-J)$. \square

Example: "unfolding by hand"

$$
y(n)=a y(n-9)+x(n)
$$

Unfold the system 2-times $(\mathrm{J}=2) \quad \Rightarrow$
Begin by replacing n with $J k+0,1, \ldots J-1$. In this case we get $\left\{\begin{array}{l}n=2 k \\ n=2 k+1\end{array}\right.$

$$
\left\{\begin{array}{l}
y(2 k)=a y(2 k-9)+x(2 k) \\
y(2 k+1)=a y(2 k-8)+x(2 k+1)
\end{array}\right.
$$

Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.Ith.se

Example: "unfolding by hand"

$$
\text { We have that }\left\{\begin{array}{l}
y(2 k)=a y(2 k-9)+x(2 k) \\
y(2 k+1)=a y(2 k-8)+x(2 k+1)
\end{array}\right.
$$

The input to a delay element can be described by $x(k J+m)$.
After J unfolding, the output from the delay element can be described as $x(J(k-1)+m)$. Thus, the above equations can be expressed as

$$
\left\{\begin{array}{l}
y(2 k)=a y(2(k-5)+1)+x(2 k) \\
y(2 k+1)=a y(2(k-4)+0)+x(2 k+1)
\end{array}\right.
$$

From above we can see that the inputs to the system are $x(2 k), x(2 k+1)$ and the constant a, the outputs are $y(2 k)$ and $y(2 k+1)$. The terms ($k-5$) and ($k-4$) relates to the number of delays in the two branches $(y(2 k)$ and $y(2 k+1)$) in the unfolded system.

Example: "unfolding by hand"

$$
\left\{\begin{array}{l}
y(2 k)=a y(2(k-(5)+1)+x(2 k) \\
y(2 k+1)=a y(2(k)+(4)+0)+x(2 k+1)
\end{array}\right.
$$

> Not trivial even for a simple graph! Need a method!!

Definitions

$\lfloor\boldsymbol{x}\rfloor$ is the floor of \boldsymbol{x}, largest integer $\leq \boldsymbol{x}$
$\lceil\boldsymbol{x}\rceil$ is the ceiling of \boldsymbol{x}, smallest integer $\geq \boldsymbol{x}$

$\boldsymbol{a} \% \boldsymbol{b}$ remainder after $\boldsymbol{a} / \boldsymbol{b}$

Examples

x	Floor $\lfloor\boldsymbol{x}\rfloor$	Ceiling $\lceil\boldsymbol{x}\rceil$
-1.1	-2	-1
0	0	0
1.01	1	2
2.9	2	3
3	3	3

$\lfloor\boldsymbol{x}\rfloor$ is the floor of x, largest integer $\leq \boldsymbol{x}$
$\lceil x\rceil$ is the ceiling of x, smallest integer $\geq x$

Example

$\boldsymbol{a} \% \boldsymbol{b}$ remainder after $\boldsymbol{a} / \boldsymbol{b}$

In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient (integer division).

$$
\begin{aligned}
& a=43 \\
& b=5
\end{aligned} \quad 43=8 \times 5+3 \Rightarrow a \% b=43 \% 5=3
$$

General Algorithm for unfolding

Step 1. For each node U in the original
$\mathrm{J}=4$ DFG, draw J nodes $U_{0}, U_{1}, U_{2}, \ldots, U_{J-1}$
$\mathrm{J}=4$

Properties of unfolding

- Unfolding preserves the number of delays in a DFG

$$
\lfloor w / J\rfloor+\lfloor(w+1) / J\rfloor+\ldots+\lfloor(w+J-1) / J\rfloor=w
$$

- Unfolding preserves precedence constraints
- J-unfolding of a loop with w_{1} delays in the original DFG \Rightarrow gcd $\left(w_{1}, J\right)$ loops in the unfolded DFG. Each loop contains $w_{l} / \operatorname{gcd}\left(w_{1}, J\right)$ delays and $J / \operatorname{gcd}\left(w_{1}, J\right)$ copies of each node.
- Unfolding a DFG with iteration bound T_{∞} results in a J-unfolded DFG with iteration bound JT_{∞}.

Relation Unfolding and Iteration Bound

$\operatorname{gcd}(9,2)=1 \Rightarrow 1$ loop
$T_{\infty}=18 / 9=2$

$y(2 k)$

DSP Design

Relation Unfolding and the Critical Path

If edge with $\mathrm{W}<\mathrm{J} \Rightarrow(\mathrm{J}-\mathrm{w})$ paths with zero delay and w paths with 1 delay

Applications of Unfolding: Sample Period Reduction

- Case 1: A node in the DFG having computation time greater than T_{∞}.
- Case 2 : Iteration bound is not an integer.
- Case 3 : Longest node computation is larger than the iteration bound T_{∞}, and T_{∞} is not an integer

Sample Period Reduction: case 1

Sample Period Reduction: case 1

The original DFG cannot have sample period equal to the iteration bound because a node computation time is more than iteration bound

$$
\begin{aligned}
& \boldsymbol{T}_{\infty}=\max _{\boldsymbol{l} \in \boldsymbol{L}}\left\{\frac{\boldsymbol{t}_{\boldsymbol{l}}}{\boldsymbol{w}_{\boldsymbol{l}}}\right\} \\
& =\max _{\boldsymbol{l} \in \boldsymbol{L}}\left\{\frac{6}{3}, \frac{6}{2}\right\}=3 \\
& <4, \text { max node time }
\end{aligned}
$$

Sample Period Reduction: case 1

Sample Period Reduction: case 2

The original DFG cannot have sample period equal to the iteration bound because the iteration bound is not an integer

$$
\boldsymbol{T}_{\infty}=\max _{\boldsymbol{l} \in \boldsymbol{L}}\left\{\frac{\boldsymbol{t}}{\boldsymbol{l}} \boldsymbol{w}_{\boldsymbol{l}}\right\}=\frac{4}{3}
$$

If a critical loop bound is of the form t_{l} / w_{l} where t_{1} and w_{1} are mutually co-prime, then w_{1}-unfolding should be used.

Unfolding of 3

Mutally Co-Prime

- Two integers a and b are co-prime if the only positive integer that divides both of them is 1 .
- For example, the integers 6, 10, 15 are coprime because 1 is the only positive integer that divides all of them.

Sample Period Reduction: case 2 (2)

$$
\boldsymbol{T}_{\infty}=4
$$

and 3 samples gives minimum sample period $4 / 3$

Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.Ith.se

Sample Period Reduction: case 3

The original DFG cannot have sample period equal to the iteration bound because the longest node computation is larger than the iteration bound T_{∞}, and T_{∞} is not an integer

The minimum J that achieves the iteration bound is the minimun value of \boldsymbol{J} such that $\boldsymbol{J} T_{\infty}$ is an integer and is greater or equal to the longest node computation time

Sample Period Reduction: case 3 Basically case 3 = case I + case II

The minimum \boldsymbol{J} that achieves the iteration bound is the minimun value of \boldsymbol{J} such that $\boldsymbol{J} \boldsymbol{T}_{\infty}$ is an integer and is greater or equal to the longest node computation time.

Ex: Assume $T_{\infty}=4 / 3$ and $t_{U, \max }=6$
If $J \cdot T_{\infty} \geq t_{U, \max }$ then $J \cdot \frac{4}{3} \geq 6 \Rightarrow J=6$

Parallel Processing and Unfolding

Parallel processing can be performed by unfolding (chapter 3)

Parallel Processing Techniques

Word-level Parallel Processing

- Unfolding a word-serial architecture by J creates a word-parallel architecture that processes J words per clock cycle

Bit-level Parallel Processing

Bit-serial processing

- One bit is processed per clock cycle and a complete word is processed in W clock cycles, where W is the word-length.

Bit-parallel processing

- One word of W bits is processed every clock cycle

Digit-serial processing

- $\quad \mathrm{N}$ bits are processed per clock cycle and a word is processed in W/N clock cycles, where N is referred to as the digit size

Bit-Level Parallel Processing

DSP Design

Bit-Parallel

Bit-Serial

Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.lth.se

Bit-serial adder

Bit-serial can be seen as a time-multiplexed architecture, in this example on addition (i.e. 1 iteration) takes 4cc.

Switch for carry signal ($\mathrm{Wl}+\mathrm{u}$)
How to unfold switches?

Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.lth.se

Unfolding of Switches

- The following assumptions are made when unfolding an edge $\mathbf{U} \rightarrow \mathbf{V}$ containing a switch :
$>$ The wordlength W is a multiple of the unfolding factor J, i.e. W = W'J.
$>$ All edges into and out of the switch have no delays.

Unfolding of Switches

- The following assumptions are made when unfolding an edge $\mathbf{U} \rightarrow \mathbf{V}$ containing a switch :
$>$ The wordlength \mathbf{W} is a multiple of the unfolding factor J , i.e. $\mathrm{W}=\mathrm{W}$ 'J.
$>$ All edges into and out of the switch have no delays.
- If so, an edge $\mathbf{U} \rightarrow \mathbf{V}$ can be unfolded as:
$>$ Write the switching instance as

$$
\mathbf{W I}+\mathbf{u}=\mathrm{J}\left(\mathbf{W}^{\prime} \mathbf{I}+\lfloor\mathbf{u} / \mathrm{J}\rfloor\right)+(\mathbf{u} \% \mathrm{~J})
$$

$>$ Draw an edge from the node $\mathrm{U}_{\mathrm{u} \% \mathrm{~J}} \Rightarrow \mathrm{~V}_{\mathrm{u} \% \mathrm{~J}}$, which is switched at time instance ($\mathbf{W}^{\prime} I+\lfloor\mathbf{u} / J\rfloor$).

Example: Unfolding of Switches, J=3

$>$ Write the switching instance as

$$
\mathbf{W I}+\mathbf{u}=\mathbf{J}\left(\mathbf{W}^{\prime} \mathbf{I}+\lfloor\mathbf{u} / \mathrm{J}\rfloor\right)+(\mathbf{u} \% \mathrm{~J})
$$

Example: Unfolding of Switches, J=3

$>$ Write the switching instance as

$$
\begin{aligned}
& W I+\mathbf{u}=\mathrm{J}\left(\mathbf{W}^{\prime} \mathbf{I}+\lfloor\mathbf{u} / \mathrm{J}\rfloor\right)+(\mathbf{u} \% \mathrm{~J}) \\
& \begin{array}{l}
91+1=3(3 I+\lfloor 1 / 3\rfloor)+(1 \% 3)=3(3 I+0)+1 \\
91+5=3(31+\lfloor 5 / 3\rfloor)+(5 \% 3)=3(31+1)+2
\end{array} \begin{array}{l}
\text { Edges } \\
\text { between } \\
\text { Nodes }
\end{array}
\end{aligned}
$$

Example: Unfolding of Switches, J=3

$>$ Write the switching instance as

$$
\begin{aligned}
& \mathbf{W I}+\mathbf{u}=\mathbf{J}(\mathbf{W} \mathbf{\prime} \mathbf{I}+\lfloor\mathbf{u} / \mathbf{J}\rfloor)+(\mathbf{u} \% \mathbf{J}) \\
& 91+1=3(31+\lfloor 1 / 3\rfloor)+(1 \% 3)=3(3 I+0)+1 \\
& 91+5=3(31+\lfloor 5 / 3\rfloor)+(5 \% 3)=3(31+1)+2
\end{aligned} \begin{aligned}
& \text { Edges } \\
& \text { between } \\
& \text { Nodes }
\end{aligned}
$$

$>$ Draw an edge from the node $\Rightarrow V_{\text {u\%J, l.e. }}$

$$
\mathrm{U}_{1} \Rightarrow \mathrm{~V}_{1} \text { and } \mathrm{U}_{2} \Rightarrow \mathrm{~V}_{2}
$$

Example: Unfolding of Switches, J=3

switched at time instance ($\mathbf{W}^{\prime} \boldsymbol{I}+\lfloor\mathbf{u} / \mathrm{J}\rfloor$), I.e.

$$
U_{1} \Rightarrow V_{1} \text { at }(31+0) \text { and } U_{2} \Rightarrow V_{2} \text { at }(3 \mid+1)
$$

Switch with multiple instances

Example:

Switch with multiple instances

Example:

Unfolding by 3

$$
\mathbf{W I}+\mathbf{u}=\mathbf{J}\left(\mathbf{W}^{\prime} \mathbf{I}+\lfloor\mathbf{u} / J\rfloor\right)+(\mathbf{u} \% \mathrm{~J})
$$

Switched at time ins sancer $\sqrt[3]{ }$

$$
\begin{aligned}
& 12 I+1=3(4 I+0)+1 \\
& 12 I+7=3(4 I+2)-1 \\
& 12 I+9=3(4 I+3)+0 \\
& 12 I+11=3(4 I+3)+2
\end{aligned}
$$

Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.Ith.se

End of Lecture

