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Repetition

• Critical path - the combinational path with maximum total execution time 

• Loop (=cycle) - a path beginning and ending at same node

• Loop bound for loop

• Iteration Bound - maximum of all loop bounds

It is the lower bound on execution time for DFG (assuming only pipelining, 

retiming, unfolding)
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Fine-Grain pielining
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Parallel Processing
a b

x(n) ax(n) abx(n)
x(0), x(1), x(2)...

x(2k)

a b

ax(2k) abx(2k)

x(2k+1)

a b

ax(2k+1) abx(2k+1)

k=0,1,2,3...

x(0), x(2), x(4)...

x(1), x(3), x(5)...

Two samples are processed in parallel => double throughput or lower power consumption due to reduced VDD

D
x(2k) x(2k-2)

When block size is 2, 1 delay element = 2 sampling delays
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– The power consumption in original architecture

– The supply voltage can be reduced to  VDD , (0< <1).
Hence, the power consumption of the pipelined filter is:

Power Consumption
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The Effect of Pipelining and 

Parallelization 

0.19P(0.4V)2.35C0.5fP
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pipepar, 

0.36P(0.58V)2.15C0.5fP
2

par 

0.37P(0.58V)1.1CfP
2

pipe 

f

a

Register

Compare

RegisterRegister
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We have seen that the power can be significantly reduced in a system using 

pipelining and parallelization. 

Pipelining only

Parallelization only

Pipe- and Parallelization

2
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Retiming
Chapter 4.



DSP Design

Fredrik Edman, Dept. of Electrical and Information Technology, Lund University, Sweden-www.eit.lth.se

What is retiming?
Retiming is a transformation technique used to change the location of delay

elements in a circuit without affecting the characteristics of the circuit.

Retiming is the technique of moving the structural location of latches or registers 

in a digital circuit to improve its performance, area, and/or power characteristics 

in such a way that preserves its functional behaviour at its outputs.

Can be used for:

- Reducing the clock period

- Reducing the number of registers

- Reducing the power consumption

- Logic synthesis (not in this course)

The lower bound on the clock period of the circuit 

can be achieved by retiming the circuit. 
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Retiming is about moving delays!

D

D

D

Delays can be moved from ALL inputs to ALL outputs

Reduce Critical Path

• faster

• reduced power consumption

Reduced number of Register

D

D
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Retiming 

A B

(2) (4)

2D
Critical path = 6

Loop bound = 6/2 = 3

Retiming does not change

• delay in loop

• the iteration bound

A B

(2) (4)

D
Critical path = 4
Loop bound = 6/2 = 3

D

...but it changes the 

critical path!
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Overview Retiming

• Cutset retiming and pipelining (visual retiming) 

• Systolic transformation

• Retiming Formulation

• Retiming for clock period minimization 
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Ex. Cutset Retiming
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TA= 2 t.u.

TM= 4 t.u.
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Ex. Cutset Retiming

Cutset: A set of edges that if removed, or cut, 

results in two disjoint graphs.

1

2

4

3

Cutset Retiming
Add k delays to edges 

going one way and 

remove k delays from 

ones going the other.

D
D 2D

(2)

(2)
(4)

(4)
Graph G1

Graph G2

Cutset
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Ex. Cutset Retiming

1

2

4

3

Cutset

D
D 2D

Tcrit=4+2=6

#D=4

Tcrit=4+2+2=8

#D=5

Cutset Retiming: Add delays to edges going one way 

and remove from edges going the other.
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Node Retiming: Cutset around one node.
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Ex. Node Cutset Retiming
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Pipelining

• Pipelining is a special case of cutset

retiming where there are no edges in the 

cutset from G2 to G1, i.e., pipelining applies 

to graphs without loops.

• Retiming is a generalization of pipelining

• Pipelining is equivalent to introducing 

delays at the input followed by retiming
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Pipelining – Feedforward Cutset

Pipelining is a special case of cutset retiming: 

Placing delays at feedforward cutsets.

D D D
x(n)

h0 h3h2h1

y(n)

Feedforward

cutset
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Overview Retiming

• Cutset retiming and pipelining

• Systolic transformation

• Retiming Formulation

• Retiming for clock period 

minimization
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Systolic Transformation

Eliminating global broadcasting
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Overview Retiming

• Cutset retiming and pipelining 

• Systolic transformation

• Retiming Formulation

• Retiming for clock period 

minimization 
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Retiming Formulation

U Vr(U) r(V)
w(e)

w(e) = weight of edge e = # of delays

r(x) = retiming values

U V
wr (e)

wr (e) = w(e) + r(V) - r(U) 

Valid retiming if all wr (e) >= 0 for all edges! 

Destination/receive

Source/send
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Retiming Formulation for a Node

1

2

4

3

D
D 2D

Graph 

G1

Graph G2 Each node in G1 has 

retiming value j

and each node in G2 has 

retiming value j+k

Any value j results in the 

same retimed graph.

Valid retiming only if all wr (e) >= 0
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1
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Node Retiming with Formulation

Original weights (         )

024

023

112

241

131











Choose any retiming values

G2=0 a r(1)=r(3)=r(4)=0

G1=1 a r(2)=1

Cutset

G1

G2

w(e)
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Node Retiming with Formulation

Original weights

024

023

112

241

131











Retiming values

r(1)=0, r(2)=1, r(3)=0 and r(4)=0

wr (e) = w(e) + r(V) - r(U) 
Receive Send

1 3 1 0 0 1

1 4 2 0 0 2

2 1 1 0 1 0

3 2 0 1 0 1

4 2 0 1 0 1

    

    

    

    

    
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1

2

4

3

D 2D

Node Retiming with Formulation (3)

Retimed weights

124

123

012

241

131











D

Algorithm for clock period minimization in 4.4.2

D

Retimed Graph
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1

2

4

3
D

D 2D

Node Retiming with Formulation (3)

D

DWhat happened is that delays 

have been moved “around”

1

2

4

3

D 2D
D
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Overview Retiming

• Cutset retiming and pipelining 

• Systolic transformation

• Retiming Formulation

• Retiming for clock period 

minimization 
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Retiming for Minimizing Clock Period

• Note that retiming will NOT 

alter the iteration bound T.

• Iteration bound is the 

theoretical minimum clock 

period to execute the 

algorithm.

• Let edge e connect node u

to node v. If the node 

computing time t(u) + t(v) > 

T, then clock period T > T.  

For such an edge, we 

require that ( ) 1rw e 

• In other words, for any possible critical path 

in the DFG that is larger than T, we 

require wr(e)  1.

Formula: Retiming for Minimizing Clock Period

(1) Check that t(u) + t(v) ≥ T then

wr (e) ≥ 0  if t(u)+t(v)=T∞

wr (e) ≥ 1  if t(u)+t(v)>T∞

(2) Solve wr(euv) = w(e) + r(v) – r(u) 

(3) Check that the retime values are valid!
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Ex. Retiming for Minimizing Clock Period

wr(e21)  0, since t(2)+t(1) = 2 = T. 

wr(e13)  1, since t(1)+t(3) = 3 > T. 

wr(e14)  1, since t(1)+t(4) = 3 > T. 

wr(e32)  1, since t(3)+t(2) = 3 > T. 

wr(e42)  1, since t(4)+t(2) = 3 > T. 

Use eq. wr(euv) = w(e) + r(v) – r(u) then

w(e21) + r(1) – r(2) = 1 + r(1) – r(2)  0

w(e13) + r(3) – r(1) = 1 + r(3) – r(1)  1

w(e14) + r(4) – r(1) = 2 + r(4) – r(1)  1

w(e32) + r(2) – r(3) = 0 + r(2) – r(3)  1

w(e42) + r(2) – r(4) = 0 + r(2) – r(4)  12T 

Check that t(u) + t(v) ≥ T then

wr (e) ≥ 0  if t(u)+t(v)=T∞

wr (e) ≥ 1  if t(u)+t(v)>T∞
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Ex. Retiming for Minimizing Clock Period

• Since the retimed graph Gr

remain the same if all node 

retiming values are added by 

the same constant. We thus 

can set r(1) = 0.  

• The inequalities then become:

1 – r(2)  0 or r(2)  1 

1 + r(3)  1 or r(3)  0

2 + r(4)  1 or r(4)  –1

r(2) – r(3)  1 or r(3) r(2)  1

r(2) – r(4)  1 or r(2)  r(4)  1

• Since

one must have r(2) = 1. 

• This implies r(3)  0. 

But we also have r(3)  0.   

Hence r(3)=0.

• These leave –1  r(4)  0. 

• Hence the two sets of solutions 

are:

r(0) = r(3) = 0, r(2) = 1, and 

r(4) = 0 or (1). 

1 (2) (3) 1 0 1 1r r      

However for larger systems…
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Solving a Systems of Inequalities

Given a systems of 

inequalities:

r(i) – r(j)  k; 1  i,j  N

Construct a constraint graph:

1. Map each r(i) to node i. Add 

a node N+1. 

2. For each inequality 

r(i) – r(j)  k, 

draw an edge eji

such that w(eji) = k.

3.  Draw N edges eN+1,i = 0.

The system of inequalities has a solution 
if and only if the constraint graph 
contains no negative cycles

If a solution exists, one solution is where 
ri is the minimum length path from the 
node N+1 to the node i.

Shortest path algorithms: (Applendix A)

Bellman-Ford algorithm

Floyd-Warshall algorithm

See chapter 4.4.2
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Drawbacks with Retiming

• The state encoding of the circuit may be destroyed, 

making testing and verification more difficult. 

• Some retimed circuits may require complicated 

initialization logic to have the circuit start in a special 

initial state. 

• Retiming changes the circuit's topology which have 

consequences in other logical and physical synthesis 

steps that make design closure more difficult.
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Time Scaling using Slow Down and 

Retiming 

• A slow down process is often used in 

combination with the cutset retiming process 

- Replace each delay in a DFG with N delays 

- N-slow DFG N-1 

- Null operations (or 0 samples) must be 

interleaved to preserve the functionality
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Time Scaling (Slow Down)

• Transform each delay 
element (register) D to ND 
Reduce the sample 
frequency by N-fold to slow 
down the computation N
times. 

• In slow down the clock 
cycle time remains 
unchanged. Only the 
sampling time is increased. 

add

mult

D

… x(3)  x(2)  x(1)

add

mult

2D

… y(3)  y(2)  y(1)

… -- x(3) -- x(2)  -- x(1) … y(3) -- y(2) -- y(1)

This provides opportunity for retiming, 
and interleaving.
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Slow Down by k
Replace each D by kD

A B

D

(1) (1) Clock

0 A0B0

1 A1B1

2 A2B2

Tclk= 2t.u.

Titer= 2t.u.

After 2-slow transformation

A B

2D

(1) (1)
Clock  

0 A0B0 

1  

2 A1B1 

3  

4 A2B2 
 

 

Tclk= 2t.u.

Titer=22t.u.

=4t.u.

• Input new samples every alternate cycles.

• null operations account for odd clock cycles.

• Hardware utilized only 50% time
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D D

D

Retiming Example: 3-stage Lattice Filter
Loop Bounds

L1

1

23
1

MultAdd
L

TT
T




L2

2

25
2

MultAdd
L

TT
T




L3

3

5
3

MultAdd
L

TT
T



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D D

D

Example: 3-stage Lattice Filter
Iteration Bound

 
1

23
,,,max 321

MultAdd
LLL

TT
TTTT


 
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D D

D

Example: 3-stage Lattice Filter
Critical Path

Critical Path

Critical Path = (N+1) Adders +2 Mult

N = Number of Stages
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D D

D

Example: 3-stage Lattice Filter
Cutset Retiming

Cutset
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D

D

Example: 3-stage Lattice Filter
Cutset Retiming

Critical Path = 4 Adders + 4 Mult

Independent of N = nr. of stages in filter

D

D

Original Critical Path = (N+1) Adders +2 Mult

compared to

Worse for Low N. Trade-off depends on TM and TA
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Critical Path = 4Adders + 4Mult

D

D

D D

Compare: Cutset Retiming

of a 4-stage Lattice Filter

Move every second delay
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Critical Path = 4Adders +4Mult

D

D

D D

D

Compare: Cutset Retiming

of a 5-stage Lattice Filter
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D D

D

Example: 3-stage Lattice Filter
Cutset Retiming with Slowdown

Critical Path

Critical Path = (N+1) Adders +2 Mult

N = Number of Stages
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Example: 3-stage Lattice Filter
Slowdown by factor 2

Critical Path

Critical Path has not changed. Same fclk.

Insertion of 0 samples to preserve behavior!

x0  x0  x1  x1  x2  x2  x3  x3 .  .  . or

x0  0 x1  0 x2  0 x3  0 .  .  .

2D 2D

2D
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2D 2D

2D

Cutsets

Add delays on Edges in one direction 

and remove in the other

Example: 3-stage Lattice Filter
Slowdown by factor 2
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D D

2D

D D

Critical Path = 2 Adders +2 Mult

But requires twice the number of clock cycles

Critical Path

Example: 3-stage Lattice Filter
Slowdown by factor 2
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Register Minimization

3D

D

7D

y1

y2

y3

D 2D 4D

y1

y2

y3

Algorithm for register minimization in 4.4.3

• Register Sharing

When a node has multiple fan-

out with different number of 

delays, the registers can be 

shared so that only the branch 

with max. # of delays will be 

needed. 

• Register reduction through 

node delay transfer from 

multiple input edges to output 

edges (e.g. r(v) > 0)

• Should be done only when 

clock cycle constraint (if any) 

is not violated.
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End of Retiming


