
FFT Algorithms and Architectures

MOJTABA MAHDAVI

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

Discrete Fourier Transform (DFT)

DFT is one of the most important algorithms in Digital

Signal Processing (DSP).

DFT is widely used in several applications:

o Audio and Image Processing

o Spectrum Analysis of Signals

o Digital Communication Transmitter/Receivers

Spectrum Analysis

DFT calculates the frequency spectrum of a signal

(discrete sinusoids components) to examine the

information encoded in:

o Frequency

o Phase

o Amplitude

DFT can find a system's frequency response from the

system's impulse response and vice versa

o Analyze the frequency/time-domain behavior of a system

Spectrum Analysis

Digital Communication Transmitter/Receiver

DFT is extensively used in multi-carrier transmission

systems like orthogonal frequency domain multiplexing

(OFDM).

DFT and IDFT are used to perform OFDM demodulation

and modulation, respectively.

Digital Communication Transmitter/Receiver

Simple OFDM physical layer chain.

DFT

An N-point DFT is calculated as:

Twiddle factors:

Complexity:

8-point DFT

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Examples

DIF vs. DIT Decomposition

Fast Fourier Transform (FFT)

 Several fast Fourier transform algorithms have been

proposed to reduce the computational complexity of DFT

calculation:

o Prime factor algorithm

o Winograd algorithm

o Cooley-Tukey algorithm

• Most common

• Focus of this presentation

Fast Fourier Transform (FFT)

FFT employs the symmetry and periodic properties of the

twiddle factors:

, …..

FFT reduces the computational complexity of DFT

calculation to:

Complexity Reduction

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

Twiddle Factor Multiplication

There are two types of Twiddle factor multiplications:

o Trivial

• Multiplication by±1,±j

• Rotation, …

o Non-trivial

• Complex Multiplications

Twiddle Factor Multiplication

N=4 N=8 N=16

j

1

-j

-1

j

1

-j

-1

j

1

-j

-1

Trivial Non-Trivial

Trivial Rotation

Trivial rotation can be realized by:

o Interchanging the real and imaginary parts and/or

o Changing the sign of the real and/or imaginary parts of the

input data

Non Trivial Rotation

Non trivial rotation can be implemented using:

o General complex multiplier

• To perform any non-trivial multiplication

o Constant multiplier

• To perform non-trivial multiplications for specific coefficients

• Less area

o CORDIC algorithm

• To realize the non-trivial multiplications through rotation

4-point DFT

































































)3(

)2(

)1(

)0(

)3(

)2(

)1(

)0(

4/184/124/60

4/124/84/40

4/64/44/20

0000

x

x

x

x

eeee

eeee

eeee

eeee

X

X

X

X

jjj

jjj

jjj




































































)3(

)2(

)1(

)0(

11

1111

11

1111

)3(

)2(

)1(

)0(

x

x

x

x

jj

jj

X

X

X

X

Only trivial coefficients

j

1

-j

-1

Add

ROM

C
A

E
G

Region Det.
A 𝑪𝒐𝒔 𝜶 − 𝒋𝑺𝒊𝒏(𝜶)

B 𝑺𝒊𝒏 𝜶 − 𝒋𝑪𝒐𝒔(𝜶)
C −𝑺𝒊𝒏 𝜶 − 𝒋𝑪𝒐𝒔(𝜶)
D −𝑪𝒐𝒔 𝜶 − 𝒋𝑺𝒊𝒏(𝜶)
E −𝑪𝒐𝒔 𝜶 + 𝒋𝑺𝒊𝒏(𝜶)
F −𝑺𝒊𝒏 𝜶 + 𝒋𝑪𝒐𝒔(𝜶)
G 𝑺𝒊𝒏 𝜶 + 𝒋𝑪𝒐𝒔(𝜶)
H 𝑪𝒐𝒔 𝜶 + 𝒋𝑺𝒊𝒏(𝜶)

Im{input}
Re{}

Im{}

Re{input}

General Twiddle Factor Multiplier

 ROM size Reduction:
o Based on the symmetry property, only the coefficients in the first Π/4

region are saved in ROM

o Mapping Table will extract the other coefficients j

1

-j

-1

Concept: Using Coefficient Symmetry

Twiddle Factor Multiplication– Constant Multiplier

>> 2

>> 2

>> 4

>> 2

>> 2 >> 4

 1 2 − 𝑗 1 2 ∗ 𝑎 + 𝑗𝑏 = 𝑐 + 𝑗𝑑

𝑏

𝑐

𝑎

𝑑

j

1

-j

-1

Concept: CSD Representation

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

FFT Algorithm

The most popular FFT algorithms are:

o Radix-r

o Improved FFT (Radix-2𝑛)

o Mixed-radix

o Split-radix

Radix-r Algorithm

The radix-r FFT algorithms:

o DFT of length N is recursively decomposed into N/r and r
until all the remaining transform lengths are less than or

equal to r.

o Number of stages: 𝐥𝐨𝐠𝒓 𝑵

o A high radix FFT algorithm reduces the number of

processing stages

• Increases the hardware complexity of each stage significantly.

Radix-2 Butterfly

 Complex inputs/outputs

Radix-4 Butterfly

4-point FFT with Radix-2 Butterfly

x(0)

x(1)

x(2)

x(3)
-j

X(0)

X(2)

X(1)

X(3)

16-point FFT - Radix-2 Algorithm

)(log 2 NNumber of stages:

Stage 1 Stage 2 Stage 3 Stage 4

Twiddle Factor Multiplications

Many of the
coefficients are trivial:

1, -1, j, -j

16-point Radix-4 FFT

Stage 1 Stage 2

Small-radix vs. High-radix FFT Algorithm

Selection of radix has a large impact on the complexity of

FFT algorithm

Small radix FFT architecture:

Simple butterfly operation

Higher number of twiddle factor multiplications

High-radix pipelined FFT architectures have been proposed

to improve the arithmetic resource utilization.

Small-radix vs. High-radix FFT Algorithm

High-radix FFT:

o The more efficient use of multipliers and adders

o Less number of twiddle factor multiplications

o Reduces the number of stages

o More complexity in trivial twiddle factor computation

o More complex stage (i.e. butterfly units)

• Radices higher than 4 require butterflies with non trivial rotations.

Improved FFT (Radix-2^n) Algorithm

Radix- 2𝑛 algorithms are proposed to overcome the

drawback of high-radix algorithms.

Radix-2𝑛 algorithm can be explained by applying the CT

algorithm two times.

o Basic unit of decomposition consists of the radix-2 butterfly.

o The number of stages requiring twiddle factor multiplications

is reduced.

e.g. Radix-2^2 Algorithm

This algorithm has:

o The same number of non-trivial multiplications as a radix-4

algorithm

o The same butterfly structure as that of radix-2 algorithm

• Can be mapped to radix-2 butterflies.

This can further on extended to Radix-2^3 and 2^4.

Mixed-radix Algorithm

The mixed-radix algorithms can be derived by mixing

different radixes.

o Generate desired FFT lengths

o More efficient processing

o Hardware complexity is similar to radix-2^n algorithm

Split-radix Algorithm

The main idea is that independent parts of the algorithm

should be computed independently based on the best

possible computational scheme.

o Reduction in computational complexity

Split-radix Algorithm

In split-radix algorithms for 2𝑛 size DFT:

o The total number of complex multiplications can be reduced

o Each stage becomes irregular

o Not efficient in terms of pipelined processing

o More complex control due to the irregularity

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

FFT Architectures

Most FFT architectures can be categorized into:

o Direct implementation

o Memory-based

o Pipelined

Direct Implementation

Requires a number of processing elements equal to the

number of operations

o Very hardware intensive

o It can be suitable for small size FFTs

o The utilization of the butterflies and rotators is 100%

Memory Based Architectures

One or more processing elements (Pes) calculate all the

butterflies and twiddle factor multiplications.

o It is necessary to compute whole FFT before it receives new

samples.

o Unable to compute the FFT when data arrives continuously.

• This can be solved by adding extra memory

Concept: Folding & Time Multiplexing

Memory Based Architectures

Concept: Unfolding/Parallel Processing

Memory Based Architectures

Memory-based architectures (in-place architecture):

o Smaller area

o Low power

o Long latency

o Require additional buffer space

o Lower throughput compared to the pipelined architectures

• Parallel processing is used to improve throughput and latency.

– Hardware cost is increased

• High-radix processing elements are used to improve throughput.

– It causes memory conflict problems

Not suitable for FFT computation in real time applications

Pipelined Architectures

Two principal techniques for pipelined architectures:

o Delay Feedback (DF), often referred to as Feedback

• SDF

• MDF

o Delay Commutator (DC), often referred to as Feed Forward (FF)

• MDC

• SDC

Pipelined architecture is a proper choice for high-

throughput and real time applications

Single-path Delay Feedback Architectures

SDF-based architectures provide memory feedback paths

to manage some butterfly outputs during each stage.

SDF techniques allow the initial FFT output sample to be

generated instantly after the final FFT input sample has

been processed.

SDF architecture has one continuous data stream of one

sample per clock cycle

Pipeline Architectures

The pipelined FFT architectures:

o Higher throughput

o Lower latency

o Suitable for real-time applications

o Acceptable hardware cost

o Perform non-stop processing at sample rate

o Proper for low power solution

Single-path Delay Feedback Architectures

Single-path Delay Feedback Architectures

SDF architecture has:

o Lower Latency!

o Low cost

o High hardware efficiency

o Low throughput due to the single path

• No concurrent processing

o Arithmetic utilization is relatively low (50%)

SDF is an optimal choice in terms of the hardware

cost and performance for many applications

Multipath Delay Feedback Architectures

MDF architecture can be generated by extending the SDF

FFT architecture using a multiple-path approach.

o A solution to provide a higher throughput

o Higher hardware cost

o Arithmetic utilization is relatively low (50%)

Multiple-path (M) architectures, are often adopted for high

throughput applications

Multipath Delay Feedback Architectures

Concept: Unfolding/Parallel Processing

Multi Delay Commutator Architectures

MDC-based architectures replace feedback data paths

with feed forward data paths with commutators as

switching operations.

o Each stage forwards its output to the next without any

feedback

o MDC architecture processes several samples in parallel

These architectures can be improved by using radix-2^n.

Multi Delay Commutator Architectures

Multi Delay Commutator Architectures

MDC-based architecture:

o Simple control path

o 100% utilization ratio of butterflies

o Higher throughput than SDF

o Higher hardware cost

MDC can achieve higher throughput, while

SDF needs less memory and hardware cost.

Algorithm/Architecture Comparison

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

SDF Architecture

16-point Single-input Pipelined FFT

Xk
Radix2

ButterflyXin

Mem 1
8 Words

Radix2
Butterfly

Mem 2
4 Words

Radix2
Butterfly

Mem 3
2 Words

Radix2
Butterfly

Mem 4
1 Word

 Stage 1 Stage 2 Stage 3 Stage 4

16-point SDF Architexture

Timing Diagram of Pipelined FFT

Latency

2048-point SDF Architecture

Symbol 1

2048 Samples

Symbol 2

2048 Samples

Symbol 1

2048 Samples

Symbol 2

2048 Samples

Symbol 3

2048 Samples

IFFT In:

IFFT Out:
Latency=2048 CC

IFFT

IFFT is realized as:

The same hardware can be used

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

4-point FFT with Radix-2 Butterfly

x(0)

x(2)

x(1)

x(3)
-j

X(0)

X(1)

X(2)

X(3)

4-point FFT with Radix-2 Butterfly

x(0)

x(1)

x(2)

x(3)
-j

X(0)

X(2)

X(1)

X(3)

DIF vs. DIT Decomposition

According to the decomposition direction, FFT algorithms

can be classified into:

o DIF decomposition:

• The output sequence is separated into even and odd indexed

samples iteratively.

o DIT decomposition:

• Separates the input sequence into even and odd samples

iteratively.

DIF vs. DIT Decomposition

In DIF, the input samples are usually in order and the

output samples are in bit-reversed order.

In DIT, the input samples are usually in bit-reversed order

and the output samples are in natural order.

• The location of the twiddle factor multiplications

• Input/Output Order

16-point DIF

16-point DIT

16-Point FFT

X(3) - 0011 X(12) - 1100

X(15) - 1111 X(15) - 1111

X(7) - 0111 X(14) - 1110

X(11) - 1011 X(13) - 1101

X(1) - 0001 X(8) - 1000

X(13) - 1101 X(11) - 1011

X(5) - 0101 X(10) - 1010

X(9) - 1001 X(9) - 1001

x(12)

x(15)

x(14)

x(13)

x(8)

x(11)

x(10)

x(9)

W 8

X(2) - 0010 X(4) - 0100

X(14) - 1110 X(7) - 0111

X(6) - 0110 X(6) - 0110

X(10) - 1010 X(5) - 0101
W 2

W 6

X(0)

X(12) - 1100 X(3) - 0011

X(4) - 0100 X(2) - 0010

X(8) - 1000 X(1) - 0001

x(4)

x(7)

x(6)

x(5)

x(0)

x(3)

x(2)

x(1)

W 7

W 5

W 6

W 4

W 3

W 1

W 2

W 0

W 6

W 2

W 4

W 0

W 0

W 0

W 4

W 0

W 4

W 0

W 4

W 0

W 4

Bit-reversed ”Normal”

A Reordering Circuit is needed to perform the above conversion

