
FFT Algorithms and Architectures

MOJTABA MAHDAVI

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

Discrete Fourier Transform (DFT)

DFT is one of the most important algorithms in Digital

Signal Processing (DSP).

DFT is widely used in several applications:

o Audio and Image Processing

o Spectrum Analysis of Signals

o Digital Communication Transmitter/Receivers

Spectrum Analysis

DFT calculates the frequency spectrum of a signal

(discrete sinusoids components) to examine the

information encoded in:

o Frequency

o Phase

o Amplitude

DFT can find a system's frequency response from the

system's impulse response and vice versa

o Analyze the frequency/time-domain behavior of a system

Spectrum Analysis

Digital Communication Transmitter/Receiver

DFT is extensively used in multi-carrier transmission

systems like orthogonal frequency domain multiplexing

(OFDM).

DFT and IDFT are used to perform OFDM demodulation

and modulation, respectively.

Digital Communication Transmitter/Receiver

Simple OFDM physical layer chain.

DFT

An N-point DFT is calculated as:

Twiddle factors:

Complexity:

8-point DFT

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Examples

DIF vs. DIT Decomposition

Fast Fourier Transform (FFT)

 Several fast Fourier transform algorithms have been

proposed to reduce the computational complexity of DFT

calculation:

o Prime factor algorithm

o Winograd algorithm

o Cooley-Tukey algorithm

• Most common

• Focus of this presentation

Fast Fourier Transform (FFT)

FFT employs the symmetry and periodic properties of the

twiddle factors:

, …..

FFT reduces the computational complexity of DFT

calculation to:

Complexity Reduction

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

Twiddle Factor Multiplication

There are two types of Twiddle factor multiplications:

o Trivial

• Multiplication by±1,±j

• Rotation, …

o Non-trivial

• Complex Multiplications

Twiddle Factor Multiplication

N=4 N=8 N=16

j

1

-j

-1

j

1

-j

-1

j

1

-j

-1

Trivial Non-Trivial

Trivial Rotation

Trivial rotation can be realized by:

o Interchanging the real and imaginary parts and/or

o Changing the sign of the real and/or imaginary parts of the

input data

Non Trivial Rotation

Non trivial rotation can be implemented using:

o General complex multiplier

• To perform any non-trivial multiplication

o Constant multiplier

• To perform non-trivial multiplications for specific coefficients

• Less area

o CORDIC algorithm

• To realize the non-trivial multiplications through rotation

4-point DFT

)3(

)2(

)1(

)0(

)3(

)2(

)1(

)0(

4/184/124/60

4/124/84/40

4/64/44/20

0000

x

x

x

x

eeee

eeee

eeee

eeee

X

X

X

X

jjj

jjj

jjj

)3(

)2(

)1(

)0(

11

1111

11

1111

)3(

)2(

)1(

)0(

x

x

x

x

jj

jj

X

X

X

X

Only trivial coefficients

j

1

-j

-1

Add

ROM

C
A

E
G

Region Det.
A 𝑪𝒐𝒔 𝜶 − 𝒋𝑺𝒊𝒏(𝜶)

B 𝑺𝒊𝒏 𝜶 − 𝒋𝑪𝒐𝒔(𝜶)
C −𝑺𝒊𝒏 𝜶 − 𝒋𝑪𝒐𝒔(𝜶)
D −𝑪𝒐𝒔 𝜶 − 𝒋𝑺𝒊𝒏(𝜶)
E −𝑪𝒐𝒔 𝜶 + 𝒋𝑺𝒊𝒏(𝜶)
F −𝑺𝒊𝒏 𝜶 + 𝒋𝑪𝒐𝒔(𝜶)
G 𝑺𝒊𝒏 𝜶 + 𝒋𝑪𝒐𝒔(𝜶)
H 𝑪𝒐𝒔 𝜶 + 𝒋𝑺𝒊𝒏(𝜶)

Im{input}
Re{}

Im{}

Re{input}

General Twiddle Factor Multiplier

 ROM size Reduction:
o Based on the symmetry property, only the coefficients in the first Π/4

region are saved in ROM

o Mapping Table will extract the other coefficients j

1

-j

-1

Concept: Using Coefficient Symmetry

Twiddle Factor Multiplication– Constant Multiplier

>> 2

>> 2

>> 4

>> 2

>> 2 >> 4

 1 2 − 𝑗 1 2 ∗ 𝑎 + 𝑗𝑏 = 𝑐 + 𝑗𝑑

𝑏

𝑐

𝑎

𝑑

j

1

-j

-1

Concept: CSD Representation

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

FFT Algorithm

The most popular FFT algorithms are:

o Radix-r

o Improved FFT (Radix-2𝑛)

o Mixed-radix

o Split-radix

Radix-r Algorithm

The radix-r FFT algorithms:

o DFT of length N is recursively decomposed into N/r and r
until all the remaining transform lengths are less than or

equal to r.

o Number of stages: 𝐥𝐨𝐠𝒓 𝑵

o A high radix FFT algorithm reduces the number of

processing stages

• Increases the hardware complexity of each stage significantly.

Radix-2 Butterfly

 Complex inputs/outputs

Radix-4 Butterfly

4-point FFT with Radix-2 Butterfly

x(0)

x(1)

x(2)

x(3)
-j

X(0)

X(2)

X(1)

X(3)

16-point FFT - Radix-2 Algorithm

)(log 2 NNumber of stages:

Stage 1 Stage 2 Stage 3 Stage 4

Twiddle Factor Multiplications

Many of the
coefficients are trivial:

1, -1, j, -j

16-point Radix-4 FFT

Stage 1 Stage 2

Small-radix vs. High-radix FFT Algorithm

Selection of radix has a large impact on the complexity of

FFT algorithm

Small radix FFT architecture:

Simple butterfly operation

Higher number of twiddle factor multiplications

High-radix pipelined FFT architectures have been proposed

to improve the arithmetic resource utilization.

Small-radix vs. High-radix FFT Algorithm

High-radix FFT:

o The more efficient use of multipliers and adders

o Less number of twiddle factor multiplications

o Reduces the number of stages

o More complexity in trivial twiddle factor computation

o More complex stage (i.e. butterfly units)

• Radices higher than 4 require butterflies with non trivial rotations.

Improved FFT (Radix-2^n) Algorithm

Radix- 2𝑛 algorithms are proposed to overcome the

drawback of high-radix algorithms.

Radix-2𝑛 algorithm can be explained by applying the CT

algorithm two times.

o Basic unit of decomposition consists of the radix-2 butterfly.

o The number of stages requiring twiddle factor multiplications

is reduced.

e.g. Radix-2^2 Algorithm

This algorithm has:

o The same number of non-trivial multiplications as a radix-4

algorithm

o The same butterfly structure as that of radix-2 algorithm

• Can be mapped to radix-2 butterflies.

This can further on extended to Radix-2^3 and 2^4.

Mixed-radix Algorithm

The mixed-radix algorithms can be derived by mixing

different radixes.

o Generate desired FFT lengths

o More efficient processing

o Hardware complexity is similar to radix-2^n algorithm

Split-radix Algorithm

The main idea is that independent parts of the algorithm

should be computed independently based on the best

possible computational scheme.

o Reduction in computational complexity

Split-radix Algorithm

In split-radix algorithms for 2𝑛 size DFT:

o The total number of complex multiplications can be reduced

o Each stage becomes irregular

o Not efficient in terms of pipelined processing

o More complex control due to the irregularity

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

FFT Architectures

Most FFT architectures can be categorized into:

o Direct implementation

o Memory-based

o Pipelined

Direct Implementation

Requires a number of processing elements equal to the

number of operations

o Very hardware intensive

o It can be suitable for small size FFTs

o The utilization of the butterflies and rotators is 100%

Memory Based Architectures

One or more processing elements (Pes) calculate all the

butterflies and twiddle factor multiplications.

o It is necessary to compute whole FFT before it receives new

samples.

o Unable to compute the FFT when data arrives continuously.

• This can be solved by adding extra memory

Concept: Folding & Time Multiplexing

Memory Based Architectures

Concept: Unfolding/Parallel Processing

Memory Based Architectures

Memory-based architectures (in-place architecture):

o Smaller area

o Low power

o Long latency

o Require additional buffer space

o Lower throughput compared to the pipelined architectures

• Parallel processing is used to improve throughput and latency.

– Hardware cost is increased

• High-radix processing elements are used to improve throughput.

– It causes memory conflict problems

Not suitable for FFT computation in real time applications

Pipelined Architectures

Two principal techniques for pipelined architectures:

o Delay Feedback (DF), often referred to as Feedback

• SDF

• MDF

o Delay Commutator (DC), often referred to as Feed Forward (FF)

• MDC

• SDC

Pipelined architecture is a proper choice for high-

throughput and real time applications

Single-path Delay Feedback Architectures

SDF-based architectures provide memory feedback paths

to manage some butterfly outputs during each stage.

SDF techniques allow the initial FFT output sample to be

generated instantly after the final FFT input sample has

been processed.

SDF architecture has one continuous data stream of one

sample per clock cycle

Pipeline Architectures

The pipelined FFT architectures:

o Higher throughput

o Lower latency

o Suitable for real-time applications

o Acceptable hardware cost

o Perform non-stop processing at sample rate

o Proper for low power solution

Single-path Delay Feedback Architectures

Single-path Delay Feedback Architectures

SDF architecture has:

o Lower Latency!

o Low cost

o High hardware efficiency

o Low throughput due to the single path

• No concurrent processing

o Arithmetic utilization is relatively low (50%)

SDF is an optimal choice in terms of the hardware

cost and performance for many applications

Multipath Delay Feedback Architectures

MDF architecture can be generated by extending the SDF

FFT architecture using a multiple-path approach.

o A solution to provide a higher throughput

o Higher hardware cost

o Arithmetic utilization is relatively low (50%)

Multiple-path (M) architectures, are often adopted for high

throughput applications

Multipath Delay Feedback Architectures

Concept: Unfolding/Parallel Processing

Multi Delay Commutator Architectures

MDC-based architectures replace feedback data paths

with feed forward data paths with commutators as

switching operations.

o Each stage forwards its output to the next without any

feedback

o MDC architecture processes several samples in parallel

These architectures can be improved by using radix-2^n.

Multi Delay Commutator Architectures

Multi Delay Commutator Architectures

MDC-based architecture:

o Simple control path

o 100% utilization ratio of butterflies

o Higher throughput than SDF

o Higher hardware cost

MDC can achieve higher throughput, while

SDF needs less memory and hardware cost.

Algorithm/Architecture Comparison

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

SDF Architecture

16-point Single-input Pipelined FFT

Xk
Radix2

ButterflyXin

Mem 1
8 Words

Radix2
Butterfly

Mem 2
4 Words

Radix2
Butterfly

Mem 3
2 Words

Radix2
Butterfly

Mem 4
1 Word

 Stage 1 Stage 2 Stage 3 Stage 4

16-point SDF Architexture

Timing Diagram of Pipelined FFT

Latency

2048-point SDF Architecture

Symbol 1

2048 Samples

Symbol 2

2048 Samples

Symbol 1

2048 Samples

Symbol 2

2048 Samples

Symbol 3

2048 Samples

IFFT In:

IFFT Out:
Latency=2048 CC

IFFT

IFFT is realized as:

The same hardware can be used

Outline

Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT)

Twiddle Factor Multiplication

FFT Algorithms

FFT Architectures

Data Flow Processing

DIF vs. DIT Decomposition

4-point FFT with Radix-2 Butterfly

x(0)

x(2)

x(1)

x(3)
-j

X(0)

X(1)

X(2)

X(3)

4-point FFT with Radix-2 Butterfly

x(0)

x(1)

x(2)

x(3)
-j

X(0)

X(2)

X(1)

X(3)

DIF vs. DIT Decomposition

According to the decomposition direction, FFT algorithms

can be classified into:

o DIF decomposition:

• The output sequence is separated into even and odd indexed

samples iteratively.

o DIT decomposition:

• Separates the input sequence into even and odd samples

iteratively.

DIF vs. DIT Decomposition

In DIF, the input samples are usually in order and the

output samples are in bit-reversed order.

In DIT, the input samples are usually in bit-reversed order

and the output samples are in natural order.

• The location of the twiddle factor multiplications

• Input/Output Order

16-point DIF

16-point DIT

16-Point FFT

X(3) - 0011 X(12) - 1100

X(15) - 1111 X(15) - 1111

X(7) - 0111 X(14) - 1110

X(11) - 1011 X(13) - 1101

X(1) - 0001 X(8) - 1000

X(13) - 1101 X(11) - 1011

X(5) - 0101 X(10) - 1010

X(9) - 1001 X(9) - 1001

x(12)

x(15)

x(14)

x(13)

x(8)

x(11)

x(10)

x(9)

W 8

X(2) - 0010 X(4) - 0100

X(14) - 1110 X(7) - 0111

X(6) - 0110 X(6) - 0110

X(10) - 1010 X(5) - 0101
W 2

W 6

X(0)

X(12) - 1100 X(3) - 0011

X(4) - 0100 X(2) - 0010

X(8) - 1000 X(1) - 0001

x(4)

x(7)

x(6)

x(5)

x(0)

x(3)

x(2)

x(1)

W 7

W 5

W 6

W 4

W 3

W 1

W 2

W 0

W 6

W 2

W 4

W 0

W 0

W 0

W 4

W 0

W 4

W 0

W 4

W 0

W 4

Bit-reversed ”Normal”

A Reordering Circuit is needed to perform the above conversion

