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Discrete Fourier Transform (DFT)

RDFT is one of the most important algorithms in Digital
Signal Processing (DSP).

«:DFT is widely used in several applications:
o Audio and Image Processing
o Spectrum Analysis of Signals

o Digital Communication Transmitter/Receivers

LUND

UNIVERSITY



Spectrum Analysis

RDFT calculates the frequency spectrum of a signal
(discrete sinusoids components) to examine the
Information encoded in:

o Frequency
o Phase

o Amplitude

«:DFT can find a system's frequency response from the
system's impulse response and vice versa

o Analyze the frequency/time-domain behavior of a system &
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Spectrum Analysis
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Digital Communication Transmitter/Recelver

RDFT Is extensively used in multi-carrier transmission
systems like orthogonal frequency domain multiplexing
(OFDM).

«:DFT and IDFT are used to perform OFDM demodulation
and modulation, respectively.
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Digital Communication Transmitter/Receiver

«=Simple OFDM physical layer chain.
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DFT

AN N-point DFT is calculated as:

X(k)y=> amWgF,  k=0,1,2,..,N-1
«=Twiddle factors:

Wik = e=32mk/N — cog(2nnk /N) — jsin(2rnk/N)

«Complexity: O(Nz)
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8-point DFT

X(0) = x(0)Wg0  +x(1)Wg0 +x(2)Wg0 + x(3)Wg0 + x(4)Wg0 +x(5)Wg0 +x(6)Wg0 + x(7)Wg°
X(1) = x(O)Wg0  +x(1)Wg! +x(2)Wg2 + x(3)Wg3 + x(4)Wg* + x(5)Wg> +x(6)Wg® + x(7)Wg’
X(2) = x(0)Wg0  +x(1)Wg? +x(2)Wg?* +x(3)Wg8 + x(4)Wg8 + x(5)Wg10+ x(6)Wg12+ x(7)W414
X(3) = x(0)Wg?  +x(1)Wg3 + x(2)Wg® +x(3)Wg° + x(4)Wg12+ x(5)W51%+ x(6)Wg18 + x(7)Wg?
X(4) = x(0)Wg?  +x(1)Wg? + x(2)Wg8 + x(3)Wg'12+ x(4)Wg16 + x(5)W520 + x(6)Wg24 + x(7)Wg28
X(5) = x(O)Wg0  + x(1)Wg> + x(2)Wg10+ x(3)Wg 13 + x(4)W420 + x(5)W52% + x(6)Wg30 + x(7)Wg33
X(6) = x(0)Wg0  +x(1)Wg8 + x(2)Wg'12+ x(3)Wg18 + x(4)Wg24 + x(5)Wg30 + x(6)Wg36 + x(7)W4*2
X(7)=| x(0)Wg? +x(1)Wg" +x(2)Wg14+ x(3)Wg21 + x(4)Wg28 + x(5)Wg3° + x(6)Wg*2 + x(7)Wg*
N-1
X(k)y=> amWgF,  k=0,1,2,..,N-1
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Fast Fourier Transform (FFT)

«r Several fast Fourier transform algorithms have been
proposed to reduce the computational complexity of DFT
calculation:

o Prime factor algorithm
o Winograd algorithm

o Cooley-Tukey algorithm
* Most common

* Focus of this presentation
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Fast Fourier Transform (FFT)

RFFT employs the symmetry and periodic properties of the
twiddle factors:

k+N _ 117k
Wy =Wy,

Wy = W

RFFT reduces the computational complexity of DFT

calculation to:
O(N xlogaN)
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Complexity Reduction

N DFT Multiplications |FFT Multiplications
256 65,536 1,024
512 262,144 2,304
1,024 1,048,576 5,120
2,048 4,194,304 11,264
4,096 16,777,216 24,576
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Twiddle Factor Multiplication

«There are two types of Twiddle factor multiplications:
o Trivial
* Multiplication by =1, =]
* Rotation, ...
o Non-trivial

* Complex Multiplications
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Twiddle Factor Multiplication
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Trivial Rotation

«xTrivial rotation can be realized by:
o Interchanging the real and imaginary parts and/or

o Changing the sign of the real and/or imaginary parts of the
Input data
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Non Trivial Rotation

«:Non trivial rotation can be implemented using:
o General complex multiplier
* To perform any non-trivial multiplication
o Constant multiplier
* To perform non-trivial multiplications for specific coefficients

* Less area
o CORDIC algorithm

* To realize the non-trivial multiplications through rotation
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4-point DFT

Only trivial coefficients

(X(0)] [ ¢° e’ e’ | x(0)
X (l) e0 e—j27r/4 e—j47r/4 e—j67z/4 X(l)
x (2) e0 e—j47r/4 e—j87r/4 e—j127r/4 X(2)
X(3) e0 e—j67z/4 e—j127z/4 e—j187z/4 X(3)
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General Twiddle Factor Multiplier

(J ROM size Reduction:

o Based on the symmetry property, only the coefficients in the first /4
region are saved in ROM

o Mapping Table will extract the other coefficients _ij
&

Region Det.

Cos(a) — jSin(a)
Sin(a) — jCos(a)
—Sin(a) — jCos(a)
—Cos(a) — jSin(a)
—Cos(a) + jSin(a)
—Sin(a) + jCos(a)
Sin(a) + jCos(a)
Cos(a) + jSin(a)

Concept: Using Coefficient Symmetry LUND
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Twiddle Factor Multiplication— Constant Multiplier

IVMS((L +jb) =

(55— J5)a+ib ,

< 3|‘*
T—
~

}[( +jlb—a)l=c+jd _‘1“\

Concept: CSD Representation

1/vV2=2"1 4273427412764 978

1/vV2=1+(1+2"2)(27%-272)

(1/V2=j1/V2)* (a +jb) =c + jd
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FFT Algorithm

«The most popular FFT algorithms are:
o Radix-r
o Improved FFT (Radix-2")
o Mixed-radix

o Split-radix
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Radix-r Algorithm

«xThe radix-r FFT algorithms:

o DFT of length N is recursively decomposed into N/r and r
until all the remaining transform lengths are less than or

equal to r.
o Number of stages: log,. N

o A high radix FFT algorithm reduces the number of
processing stages

* Increases the hardware complexity of each stage significantly.
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Radix-2 Butterfly

R Complex inputs/outputs

X0 + »Y0=X0+X1

X1 - »Y1=X0-X1
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Radix-4 Butterfly

- Y(N)
= Y(n+N/4)
- Y(N+N/2)
- Y(n+3N/4)
X(n) Y(n)
X(n+N/4) Y(n+N/4)
X(n+N/2) Y(n+N/2)
X(n+3N/4) Yin+3N/4) Lu I\;D
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4-point FFT with Radix-2 Butterfly
X(0) @ X(0)
X(2) _® X(1)
X(3) 1> ><Z XG)
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16-point FFT - Radix-2 Algorithm

Twiddle Factor Multiplications

| W,
Wi
Many of the
coefficients are trivial:
Me 1/ _11 jr _j
Wi
Wi Wi
w2 i
Wi W
Wi i
Wi Wi
Stagel = Stage?2 __Stage3 ~  Staged4 W=y
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16-point Radix-4 FFT

Stage 1 Stage 2
X(0) —om e . . X(0)
x(1) R A X(4)
X(2) Qs X(8)
x(3) s X(12)
o Ris X(1)
X(5 7 Do X(5)
X(7) XIIF ® X(13)

SSUKLS e

@) ;og.g.gt:m X(2)

{ : : X(6
N0
xg;; Ruvis. X(14)
X K18 X(3)
x(13) N0 A X(7)
x(14) RS X(11)
x(15) R)—18 X(15)
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Small-radix vs. High-radix FFT Algorithm

«rSelection of radix has a large impact on the complexity of
FFT algorithm

«Small radix FFT architecture:
«RSimple butterfly operation

«Higher number of twiddle factor multiplications

«rHigh-radix pipelined FFT architectures have been proposed
to improve the arithmetic resource utilization.
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Small-radix vs. High-radix FFT Algorithm

«High-radix FFT:
o The more efficient use of multipliers and adders
o Less number of twiddle factor multiplications
o Reduces the number of stages
o More complexity in trivial twiddle factor computation

o More complex stage (i.e. butterfly units)

* Radices higher than 4 require butterflies with non trivial rotations.
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Improved FFT (Radix-2"*n) Algorithm

«rRadix- 2" algorithms are proposed to overcome the
drawback of high-radix algorithms.

«rRadix-2™ algorithm can be explained by applying the CT
algorithm two times.

o Basic unit of decomposition consists of the radix-2 butterfly.

o The number of stages requiring twiddle factor multiplications
IS reduced.
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e.g. Radix-2"2 Algorithm

«xThis algorithm has:

o The same number of non-trivial multiplications as a radix-4
algorithm

o The same butterfly structure as that of radix-2 algorithm

e Can be mapped to radix-2 butterflies.

«rThis can further on extended to Radix-2*3 and 2"4.
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Mixed-radix Algorithm

«The mixed-radix algorithms can be derived by mixing
different radixes.

o Generate desired FFT lengths
o More efficient processing

o Hardware complexity is similar to radix-2*n algorithm
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Split-radix Algorithm

«The main idea is that independent parts of the algorithm
should be computed independently based on the best
possible computational scheme.

o Reduction in computational complexity

z(n) —0 O —

/ N/2-point DFT
z(n+ N/4) —O O

z(n+ N/2)

N/4-point DFT —

z(n + 3N/4) —O N/4-point DFT |— 3 ]
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Split-radix Algorithm

«rln split-radix algorithms for 2™ size DFT-:
o The total number of complex multiplications can be reduced
o Each stage becomes irregular
o Not efficient in terms of pipelined processing

o More complex control due to the irregularity
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FFT Architectures

«Most FFT architectures can be categorized into:
o Direct implementation
o Memory-based

o Pipelined
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Direct Implementation

«Requires a number of processing elements equal to the
number of operations

o Very hardware intensive
o It can be suitable for small size FFTs

o The utilization of the butterflies and rotators is 100%
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Memory Based Architectures

«One or more processing elements (Pes) calculate all the
butterflies and twiddle factor multiplications.

o It is necessary to compute whole FFT before it receives new
samples.

o Unable to compute the FFT when data arrives continuously.

* This can be solved by adding extra memory

Input
Output

Y

Memory FFT Core

L

Concept: Folding & Time Multiplexing uLNEEIiR




Memory Based Architectures
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Memory Based Architectures

«Memory-based architectures (in-place architecture):
o Smaller area
o Low power
o Long latency
o Require additional buffer space

o Lower throughput compared to the pipelined architectures
* Parallel processing is used to improve throughput and latency.
— Hardware cost is increased
* High-radix processing elements are used to improve throughput.

— It causes memory conflict problems
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Pipelined Architectures

«Two principal techniques for pipelined architectures:

o Delay Feedback (DF), often referred to as Feedback
* SDF
* MDF
o Delay Commutator (DC), often referred to as Feed Forward (FF)
* MDC
« SDC

Pipelined architecture is a proper choice for high-
throughput and real time applications

22
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Single-path Delay Feedback Architectures

«RkSDF-based architectures provide memory feedback paths
to manage some butterfly outputs during each stage.

«RSDF techniques allow the initial FFT output sample to be
generated instantly after the final FFT input sample has
been processed.

«SDF architecture has one continuous data stream of one
sample per clock cycle
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Pipeline Architectures

«xThe pipelined FFT architectures:
o Higher throughput
o Lower latency
o Suitable for real-time applications
o Acceptable hardware cost
o Perform non-stop processing at sample rate

o Proper for low power solution

UNIVERSITY



Single-path Delay Feedback Architectures
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Single-path Delay Feedback Architectures

«SDF architecture has:
o Lower Latency!
o Low cost
o High hardware efficiency

o Low throughput due to the single path
* No concurrent processing

o Arithmetic utilization is relatively low (50%)

SDF is an optimal choice in terms of the hardware
cost and performance for many applications
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Multipath Delay Feedback Architectures

«MDF architecture can be generated by extending the SDF
FFT architecture using a multiple-path approach.

o A solution to provide a higher throughput
o Higher hardware cost

o Arithmetic utilization is relatively low (50%)

«Multiple-path (M) architectures, are often adopted for high
throughput applications
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Multipath Delay Feedback Architectures
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Multi Delay Commutator Architectures

«*MDC-based architectures replace feedback data paths
with feed forward data paths with commutators as
switching operations.

o Each stage forwards its output to the next without any
feedback

o MDC architecture processes several samples in parallel

«These architectures can be improved by using radix-2"n.
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Multi Delay Commutator Architectures
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Multi Delay Commutator Architectures

«MDC-based architecture:
o Simple control path
o 100% utilization ratio of butterflies
o Higher throughput than SDF

o Higher hardware cost

MDC can achieve higher throughput, while
SDF needs less memory and hardware cost.
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Algorithm/Architecture Comparison

multiplier # adder # | memory size control
R2MDC 2(log, N- 1) 4log, N 3N/2 -2 simple
R2SDF 2(log, N-1) 4 log, N N-1 simple
R4SDF log, N -1 8 log, N N-1 medium
R4MDC 3(log, N-1) 8 log, N 5N/2 -4 simple
R4SDC log, N-1 3log, N 2N -2 complex
R2°SDF log, N-1 4 log, N N-1 simple
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SDF Architecture

«r16-point Single-input Pipelined FFT

Xin

Xk

<«———Stage 1 > < Stage 2 > < Stage 3 > < Stage 4—>
Mem 1 Mem 2 Mem 3 Mem 4
8 Words 4 Words 2 Words 1 Word
SEEE— — S S
Radix2 Radix2 Radix2 Radix2
Butterfly . Butterfly Butterfly Butterfly
—ﬂ%}——» >
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16-point SDF Architexture

[ = I = = I = = 0 =7 B & [ L

input:
X0 xI x2 X3 x4 x5 x6 x7 x8 x9 xI0xI1xI2xI3xI4xI5 x'0 x' X'2 x'3 x'4 x'S X6 X'7 x'8 x'9 x'I0x'11x'12
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N O I I
o B = -
i I i =
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i ] [
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W = B = =
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I I [ | 1
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H B B B B B NN
Stage 4 X
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Timing Diagram of Pipelined FFT
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2048-point SDF Architecture

«<—2048 Samples > 2048 Samples >« 2048 Samples————
«<—2048 Samples >< 2048 Samples————

Latency=2048 CC

v

IFFT Out: <

<
oy
&/
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IFFT

RIFFT Is realized as:

N—-1
]_ *
z(n) = N( S :X(k)*W}S;"’) . n=0,1,..,N-1
k=0

«The same hardware can be used
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4-point FFT with Radix-2 Butterfly
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4-point FFT with Radix-2 Butterfly
X(0) @ X(0)
X(2) _® X(1)
X(3) 1> ><Z XG)
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DIF vs. DIT Decomposition

«rAccording to the decomposition direction, FFT algorithms
can be classified into:

o DIF decomposition:

* The output sequence is separated into even and odd indexed
samples iteratively.

o DIT decomposition:

* Separates the input sequence into even and odd samples
iteratively.
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DIF vs. DIT Decomposition

«xIn DIF, the input samples are usually in order and the
output samples are in bit-reversed order.

«xIn DIT, the input samples are usually in bit-reversed order
and the output samples are in natural order.

« The location of the twiddle factor multiplications
* Input/Output Order
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16-point DIF

X(0)

X(8)

vy d
C
ANAN

3

X4

s
=

X(2)

be
=
=
=
S

X(6)

R
>
A

—_~
—
—_—

X (1)

NG L

X(9)

X(5)

TR

X(13)

X(3)

)
—_—

=
=

3

X(7)

o b D

X XXMM XX

B
=
—_
[N
wn
—




16-point DIT
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x(0)
x(1)
X(2)
X(3)
x(4)
X(5)
x(6)
x(7)
X(8)
X(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

16-Point FFT

R Bit-reversed ”Nor
i o o
\\“’II X(10) - 1010
\““’i X(6 0110
‘““w X(1)4- 1110
ww DR

mom S
i 09 e
e w 4

III\\\ o= @ X(13) - 1101
IIl\\°I7. ‘ NS e ™
Il\hﬂ\ X e

S D > D 52 X(15) - 1111
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X(1) - 0001
X(2) - 0010
X(3) - 0011
X(4) - 0100
X(5) - 0101
X(6) - 0110
X(7) - 0111
X(8) - 1000
X(9) - 1001
X(10) - 1010
X(11) - 1011
X(12) - 1100
X(13) - 1101
X(14) - 1110

X(15) - 1111

A Reordering Circuit is needed to perform the above conversion
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