Handin Exercise 3, Mixers

This exercise deals with mixers and is a preparation for lab 3. An active mixer shown in the figure below is to be designed. You will need to refer to the data sheet of the 130 nm CMOS process. The following requirements and information is provided:

- Supply voltage $=1.2 \mathrm{~V}$
- Voltage gain $=6 \mathrm{~dB}$
- LO frequency $=2 \mathrm{GHz}$
- \quad RF frequency $=1.8 \mathrm{GHz}$
- $\mathrm{R}_{\mathrm{L}}=300 \Omega$
- $L=0.25 u m$ for all transistors
- $\mathrm{V}_{\text {ov } 1,2}=200 \mathrm{mV}$
- Disregard bulk effects

1. Calculate the transconductance $\left(g_{m}\right)$ required of M_{1} and M_{2} to make the voltage conversion gain equal to $6 d B$, under the assumption of ideal current switching in $M_{3}-M_{6}$.
2. Calculate width and bias current of M_{1} and M_{2}.
3. Assume the width of the switch transistors $\left(M_{3}\right.$ to $\left.M_{6}\right)$ to equal the width of M_{1} and M_{2}. Calculate the minimum amplitude required of a square wave LO to accomplish perfect switching.
4. Calculate bias voltages at all gates, so that $\mathrm{V}_{\mathrm{DS} 1,2}$ is 0.2 V above $\mathrm{V}_{\mathrm{DSsat1}, 2}$.
5. Will the maximum signal amplitude be limited by the input or the output, if the limit is when devices either cut-off or go into triode region? Assume only the IF signal to be present at the output, and all higher frequencies to be filtered off by C_{L} (not shown in figure).
