RADIO SYSTEMS – ETIN15

Lecture no:

5

Digital modulation

Anders J Johansson, Department of Electrical and Information Technology anders.j.johansson@eit.lth.se

3 April 2017

Contents

- Brief overview of a wireless communication link
- Radio signals and complex notation (again)
- Modulation basics
- Important modulation formats

STRUCTURE OF A WIRELESS COMMUNICATION LINK

A simple structure

3 April 2017

RADIO SIGNALS AND COMPLEX NOTATION (from Lecture 3)

Simple model of a radio signal

A transmitted radio signal can be written

- By letting the transmitted information change the amplitude, the frequency, or the phase, we get the tree basic types of digital modulation techniques
 - ASK (Amplitude Shift Keying)
 - FSK (Frequency Shift Keying)
 - PSK (Phase Shift Keying)

MIEATED PES

Example: Amplitude, phase and frequency modulation

The IQ modulator

ON LECTURE

Transmited radio signal

$$s(t) = s_I(t) \cos(2\pi f_c t)$$

$$- s_Q(t) \sin(2\pi f_c t)$$

Q-channel

(quadrature)

Take a step into the complex domain:

Complex envelope
$$\tilde{s}(t) = s_I(t) + j s_Q(t)$$

$$e^{j2\pi f_c t}$$

Interpreting the complex notation

Complex envelope (phasor)

Polar coordinates:

$$\tilde{s}(t) = s_I(t) + js_Q(t) = A(t)e^{j\phi(t)}$$

Transmitted radio signal

$$s(t) = \operatorname{Re} \left\{ \tilde{s}(t) e^{j2\pi f_c t} \right\}$$

$$= \operatorname{Re} \left\{ A(t) e^{j\phi(t)} e^{j2\pi f_c t} \right\}$$

$$= \operatorname{Re} \left\{ A(t) e^{j(2\pi f_c t + \phi(t))} \right\}$$

$$= A(t) \cos \left(2\pi f_c t + \phi(t) \right)$$

By manipulating the amplitude A(t) and the phase $\Phi(t)$ of the complex envelope (phasor), we can create any type of modulation/radio signal.

3 April 2017 9

MODULATION BASICS

Pulse amplitude modulation (PAM) The modulation process

PAM:
$$s_{LP}(t) = \sum_{m=-\infty}^{\infty} c_m g(t - mT_s)$$
 Symbol time

Many possible pulses

"Standard" basis pulse criteria

$$\int_{-\infty}^{\infty} |g(t)|^2 dt = 1 \text{ or } = T_s$$
 (energy norm.)

$$\int_{-\infty}^{-\infty} g(t)g^*(t-mT_s)dt = 0 \text{ for } m \neq 0 \quad \text{(orthogonality)}$$

Pulse amplitude modulation (PAM) Basis pulses and spectrum

Assuming that the complex numbers c_m representing the data are independent, then the **power spectral density** of the base band PAM signal becomes:

$$S_{LP}(f) \sim \left| \int_{-\infty}^{\infty} g(t) e^{-j2\pi f t} dt \right|^{2}$$

which translates into a radio signal (band pass) with

$$S_{BP}(f) = \frac{1}{2} \left(S_{LP}(f - f_c) + S_{LP}(-f - f_c) \right)$$

Pulse amplitude modulation (PAM) Basis pulses and spectrum

Illustration of power spectral density of the (complex) base-band signal, $S_{LP}(f)$, and the (real) radio signal, $S_{BP}(f)$.

What we need are basis pulses g(t) with nice properties like:

- Narrow spectrum (low side-lobes)
- Relatively short in time (low delay)

Pulse amplitude modulation (PAM) Basis pulses

FREQ. DOMAIN

Rectangular [in time]

(Root-) Raised-cosine [in freq.]

Pulse amplitude modulation (PAM) Interpretation as IQ-modulator

For real valued basis functions g(t) we can view PAM as:

(Both the rectangular and the (root-) raised-cosine pulses are real valued.)

Multi-PAM Modulation with multiple pulses

Multi-PAM Modulation with multiple pulses

Frequency-shift keying (FSK) with M (even) different transmission frequencies can be interpreted as multi-PAM if the basis functions are chosen as:

$$g_k(t) = e^{-j\pi k\Delta f t}$$
 for $0 \le t \le T_s$

and for k = +/-1, +/-3, ..., +/-M/2

Bits: 00 01 10 11

Continuous-phase FSK (CPFSK) The modulation process

CPFSK:
$$s_{\text{LP}}(t) = A \exp(j \Phi_{\text{CPFSK}}(t))$$

where the amplitude A is constant and the phase is

$$\Phi_{\text{CPFSK}}(t) = 2\pi h_{\text{mod}} \sum_{m=-\infty}^{\infty} c_m \int_{-\infty}^{t} \tilde{g} \underbrace{(u - mT) du}_{\text{DI}}$$

where h_{mod} is the modulation index.

Phase basis pulse

Continuous-phase FSK (CPFSK) The Gaussian phase basis pulse

In addition to the rectangular phase basis pulse, the Gaussian is the most common.

 $BT_s = 0.5$

IMPORTANT MODULATION FORMATS

Binary phase-shift keying (BPSK) Rectangular pulses

Binary phase-shift keying (BPSK) Rectangular pulses

Signal constellation diagram

3 April 2017 22

Binary phase-shift keying (BPSK) Rectangular pulses

Contained percentage of total energy	spectral efficiency
90%	0.59Bit/s/Hz
99%	0.05Bit/s/Hz

Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5)

Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5)

Complex representation

Signal constellation diagram

Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5)

Quaternary PSK (QPSK or 4-PSK) Rectangular pulses

Radio signal

Quaternary PSK (QPSK or 4-PSK) Rectangular pulses

Power spectral density for QPSK

Cont	tained percentage of total energy	spectral efficiency
	90%	1,18Bit/s/Hz
	99%	0.10Bit/s/Hz

Twice the spectrum efficiency of BPSK (with rect. pulses). TWO bits/pulse instead of one.

Quadrature ampl.-modulation (QAM) Root raised-cos pulses (roll-off 0.5)

Complex representation

Contained percentage of total energy	spectral efficiency
0004	0.04D'1/-/H-
90%	$\begin{array}{c c} 2.04Bit/s/Hz \\ \hline 1.58Bit/s/Hz \end{array}$

Much higher spectral efficiency than QPSK (with rectangular pulses).

Amplitude variations The problem

Signals with high amplitude variations leads to less efficient amplifiers.

Complex representation of QPSK

It is a problem that the signal passes through the origin, where the amplitude is ZERO. (Infinite amplitude variation.)

Can we solve this problem in a simple way?

Amplitude variations A solution

Let's rotate the signal constellation diagram for each transmitted symbol!

Amplitude variations A solution

Looking at the complex representation ...

π / 4- Differential QPSK (DQPSK)

THE TOTAL TO

Complex representation

Still uses the same rectangular pulses as QPSK - the power spectral density and the spectral efficiency are the same.

This modulation type is used in several standards for mobile communications (due to it's low amplitude variations).

Offset QPSK (OQPSK) Rectangular pulses

In-phase signal

Quadrature signal

There is **one bit-time** offset between the in-pase and the quadrature part of the signal (a delay on the Q channel). This makes the transitions between pulses take place at different times!

Offset QPSK Rectangular pulses

Complex representation

Offset QAM (OQAM) Raised-cosine pulses

Continuous-phase modulation

Basic idea:

- Keep amplitude constant
- Change phase continuously

In this particular example we change the phase in a piecewise linear fashion by $\pm \pi/2$, depending on the data transmitted.

This type of modulation — can be interpreted both as phase and frequency modulation. It is called MSK (minimum shift keying) or FFSK (fast frequency shift keying).

Minimum shift keying (MSK)

Simple MSK implementation

Minimum shift keying (MSK)

Power spectral density of MSK

 $(f-f_c)T_B$

Contained percentage of total energy	spectral efficiency
90 %	$1,29 \; \mathrm{Bit} \; / \; \mathrm{s} \; / \; \mathrm{Hz}$
99 %	0,85 Bit / s / Hz

Further improvement of the phase: Remove 'corners'

MSK (Rectangular pulse filter)

Gaussian filtered MSK - GMSK (Gaussian pulse filter)

Simple GMSK implementation

When implemented this "simple" way, it is usually called **G**aussian filtered frequency shift keying (GFSK).

GSFK is used in e.g. Bluetooth.

Digital GMSK implementation

This is a more precise implementation of GMSK, which is used in e.g. GSM.

W. Toologian Too

Power spectral density of GMSK.

Contained percentage of total energy	spectral efficiency
90~%	$1,45~\mathrm{Bit}$ / s / Hz
99 %	$0.97~\mathrm{Bit}~/~\mathrm{s}~/~\mathrm{Hz}$

How do we use all these spectral efficiencies?

Example:

Assume that we want to use MSK to transmit 50 kbit/sec, and want to know the required transmission bandwidth.

Take a look at the spectral efficiency table:

	Contained percentage of total energy	spectral efficiency
\llbracket	90 %	$1,29 \; \mathrm{Bit} \; / \; \mathrm{s} \; / \; \mathrm{Hz}$
	99~%	$0.85~\mathrm{Bit}$ / s / Hz

The 90% and 99% bandwidths become:

$$B_{90\%} = 50000/1.29 = 38.8 \text{ kHz}$$

$$B_{99\%} = 50000 / 0.85 = 58.8 \text{ kHz}$$

Summary

	Modulation method	spectral efficiency	spectral efficiency
		for 90 $\%$ of	for 99 % of
		total energy	total energy
		Bit / s / Hz	Bit / s / Hz
BPSK with	BPSK	0,59	0,05
root-raised —	\rightarrow BAM (α =0.5)	1,02	0,79
cosine pulses	QPSK, OQPSK,	1,18	0,10
puises	MSK	1,29	0,85
	$GMSK (B_G T= 0.5)$	1,45	0,97
	QAM ($\alpha = 0.5$)	2,04	1,58

TABLE 11.1 in textbook.