ETIA06 Electrical Engineering: Possibilities and Limitations

Anders J Johansson 2017

Anders J Johansson

- Docent in Radiosystems
 - How to design and build a radio that works.
 - Applications ranging from brain implants to particle accelerators (uW to Mw).

www.essscandinavia.se

Anders J Johansson, cont.

- Develops material for and educates teachers in embedded systems and electronics in order to get more engineering into basic education.
- Works with getting rapid prototyping and digital design methods into swedish Slöjd education.
- Previously antenna designer at Sony Ericsson.
 - Worked closely with industrial designers and mechanical engineers.

Course outline

- A couple of lectures
- Two labs
- One project
 - Two persons per group
- Final report and demo!

29/8 *Tuesday* **Lecture** Course information and introduction to concepts. 1/9 *Friday* **Lecture** Electronics and embedded systems. Register project groups.

5/9 *Tuesday* **Laboration** LittleBits 8/9 *Friday* **Lecture** Programming. Register project name.

12/9 *Tuesday* **Laboration** Arduino 15/9 *Friday* **Meeting** Project groups present their ideas and propose material list.

19/9 Tuesday Lecture 22/9 Friday Lecture

26/9 *Tuesday* Project group meeting A 29/9 *Friday* Project group meeting B

3/10 *Tuesday* Project group meeting A 6/10 *Friday* Project group meeting B

10/10 Tuesday TBD 15/10 Friday Project demos.

22/10 Friday Deadline for the report and video.

Course requirements

- Needed to pass course:
 - Attend two labs.
 - Attend and give project demo.
 - Project report (Details later, but necessary parts include: parts list, estimated cost, block and circuit diagram, photos of quick and dirty, functional, and final prototypes.
 - Project video (1 minute)
 - Hand back parts

Labs

• LittleBits

• Arduino

Electrical engineering basics

Embedded basics

Programming basics

```
document getElementBy(d)

fi (descriptions length > (page * ) + (compared + (c
```

Prototype basics

3D systems

Prototypes

- Different kind of prototypes
 - Quick and dirty
 - Functional (Proof of concept, Working)
 - Look and feel (Visual/Tactile)
 - Integrated (User experience/Functional)
 - Production

Quick and dirty

Quick and Dirty

- The quick and dirty prototype
 - Facilitates communication
 - Gives a first idea of look and feel
 - Test/roleplay experinece

Functional electric prototype

(Not my kitchen, found the picture on the web....)

Functional (electrical) prototype

- All electric components present
- Test functionality
 - Does motors, lights etc. turn on and off as intended?
 - Does displays give the right message?
 - Do the inputs and sensors work?

Forgotten-kid-in-car-seat-alarm

https://hackaday.com/2017/08/26/hackaday-prize-entry-fochica-alerts-you/

Next steps

In some order:

- Look and feel
 - Handmade
 - CAD/3D-printed mockup
 - Etc.
 - Possible to "fake" functionality
- Integrated prototype

Then:

- Production prototype
- Refinements...

Books

- No course book, but Humble Bundle right now has an offer >18 pdf books for 15 USD
 - www.humblebundle.com

Some resources

- Adafruit
 - learn.adafruit.com
 - Basics: Collins lab
- Sparkfun
 - learn.sparkfun.com

More about this when we speak about embedded systems! (I.e. Arduino, Raspberry Pi et al.)

First assignment:

- The project will be done in pairs, find a partner before Friday!
- Start thinking about ideas, but don't get stressed / locked in yet: the labs are intended to give inspiration!