Circuits for Data Converters

Pietro Andreani

Dept. of Electrical and Information Technology Lund University, Sweden

- Sample-and-Hold (S\&H)
- Diode bridge S\&H
- Switched emitter follower
- BJT S\&H
- CMOS S\&H
- CMOS switch with low supply voltage
- Folding amplifiers
- Voltage-to-current converters
- Clock generation

Sample-and-Hold

The S\&H uses two phases \rightarrow one for sampling, one for retaining and making the signal available to the following circuits (hold phase)

The input buffer reduces the input load, and the output buffer avoids discharging the sampling capacitance
If the output is available during the sampling period, we have a track-and-hold (T\&H)

Diode bridge - non-idealities

If $\mathrm{I}_{1}>\mathrm{I}_{2} \rightarrow$ current difference flows into the signal source during sampling, but during hold brings I_{1} towards triode \rightarrow voltage at B increases, D2 can enter conduction and corrupt the sampled signal \rightarrow it is important to have $\mathrm{I}_{1}<\mathrm{I}_{2}$, which brings node B down and does not cause any harm

Improved diode bridge

The two extra diodes DA and DB are reverse-biased (by D2 and D4 conducting) during Tracking, but are turned on by the two I_{x} during Hold, clamping B and A at $\pm \mathrm{V}_{\mathrm{D}}(\approx \pm 0.7 \mathrm{~V}) \rightarrow$ constant biasing of D 1 and D 2 results in constant hold pedestal
A and B are biased through the load impedance of the buffer, and the conducting diodes DA and DB have a low impedance of $1 / g_{m} \rightarrow R_{A}$ and R_{B} are much reduced \rightarrow decoupling of input from $C_{S} \rightarrow$ much reduced feedthrough

Improved version

Q_{E} is an emitter follower during sampling; when Φ_{H} goes high and Φ_{S} low, $I_{\text {bias }}$ flows through R_{b} and V_{B} is pulled down, but the emitter of Q_{E} is kept high by $\mathrm{C}_{S} \rightarrow \mathrm{Q}_{\mathrm{E}}$ is switched off

The voltage on C_{S} is a shifted replica of the input \rightarrow usually not a problem, as the DC component is not interesting

However, $C_{B E}$ in Q_{E} causes a hold pedestal that depends on the reversed V_{BE} during hold \rightarrow uncontrolled V_{BE}, unpredictable pedestal

Left: Q_{C} replicates the held voltage and clamps V_{B} during hold \rightarrow constant $\mathrm{V}_{\mathrm{BE}}=$ constant pedestal; during tracking Q_{C} goes off and does not influence operations

Other source of pedestal: charge injection from base and collector of Q_{S} and $Q_{H} \rightarrow Q_{S}$ matched by dummy transistors $Q_{D 1}$ and $Q_{D 2}$ (right) driven by complementary phases; back-to-back diode D_{1} and D_{2} between the differential outputs match the non-linear $C_{B E}$ from Q_{E}

Input buffers

Input buffers must be linear, fast, and capable of switching quickly from Sample to Hold and vice-versa
Left: differential buffer with gain=-1 (if equal resistances and BJTs); very fast, but inverting \rightarrow DC level of one output may become close to its input \rightarrow small V_{CB}; in the off-state both outputs are pulled down $\rightarrow \mathrm{V}_{\mathrm{CB}}$ can become forward biased \rightarrow collector current from the input, slowing down the next off-on transition

(a)

(b)

Input buffers - II

Right: pseudo-differential, each buffer is an emitter follower with a shiftup at the output to compensate for the shift-down at the input; avoids the previous problem (but x2 current for the same f_{T}) \rightarrow if outputs are pulled down by current larger than $I_{\text {bias }} / 2, Q_{3}$ ad Q_{4} are switched off, and can quickly be switched on when the circuit goes back to tracking

Complementary BJT S\&H

If $n p n$ and $p n p$ have comparable f_{T} (however, not usual!) \rightarrow circuit (a) implements the DC shift in the previous slide; (b) \rightarrow push-pull implementation - with equal $n p n(p n p)$ areas and $\mathrm{I}_{1}=\mathrm{I}_{2}$, bias output current is I_{1}; during transients, one output transistor reduces its V_{BE}, making it available for the other; if one goes off, all current through the other transistor flows through the output (class B)
(c): switched buffer $\rightarrow \mathrm{Q}_{\mathrm{S} 1} / \mathrm{Q}_{\mathrm{H} 1}\left(\mathrm{Q}_{\mathrm{S} 2} / \mathrm{Q}_{\mathrm{H} 2}\right)$ divert $\mathrm{I}_{1}\left(\mathrm{I}_{2}\right)$ from the emitter of $Q_{1}\left(Q_{3}\right)\left(C L \rightarrow\right.$ clamping block; sources/sinks I_{1} / I_{2} during Hold)

Features of BJT S\&H

Good speed and linearity, but limited dynamic range (junctions must be kept in reverse in the off-state) - consider the buffer/S\&H below:

Hold $\rightarrow Q_{4}$ is in reverse; emitter of Q_{4} follows the input via $Q_{2} \rightarrow$ the limit to the input voltage swing is (assuming a differential input signal $\pm V_{i n}$):

Maximum change of full-range sine wave (at Nyquist) is $\mathrm{V}_{\text {ref }} / 2$ over the time $\mathrm{T} / 2 \rightarrow V_{\text {REF }} / 2<-V_{\text {REF }} / 2+V_{D} \rightarrow$ maximum differential input amplitude cannot exceed $2 \mathrm{~V}_{\mathrm{D}}$

S\&H non-linearity

Depends on the non-linear $\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{E}}$ relation $V_{B E} \approx V_{B E 0}+V_{T} \ln \frac{I_{E}}{I_{\text {bias }}}$
I_{E} is the sum of $\mathrm{I}_{\text {bias }}$ and the current into $\mathrm{C}_{\mathrm{S}}: I_{E} \approx I_{\text {bias }}+C_{S} \frac{d V_{\text {in }}}{d t}$
In a pseudo-differential circuit, we have

$$
V_{\text {out }}=V_{\text {int }}-V_{\text {BE0 }}-V_{T} \ln \frac{I_{\text {bias }}+C_{S} \frac{d V_{\text {in }}}{d t}}{I_{\text {bias }}} ; \quad V_{\text {out }-}=V_{\text {in- }}-V_{B E 0}-V_{T} \ln \frac{I_{\text {bias }}-C_{S} \frac{d V_{\text {in }}}{d t}}{I_{\text {bias }}}
$$

resulting in the error on the differential output:

$$
\delta V_{\text {out }, d}=V_{T} \ln \frac{I_{\text {biss }}+C_{S} \frac{d V_{i n}}{d t}}{I_{\text {bias }}-C_{S} \frac{d V_{i n}}{d t}}
$$

S\&H non-linearity - II

With an input $V_{i n}=A \sin \left(\omega_{m} t\right)$, we obtain

$$
\delta V_{\text {out }, d}=V_{T} \ln \frac{I_{\text {bias }}+A \omega_{l n} C_{S} \cos \left(\omega_{n} t\right)}{I_{\text {bias }}-A \omega_{l n} C_{S} \cos \left(\omega_{n} t\right)}
$$

odd function \rightarrow only odd harmonics, with amplitude proportional to input amplitude and frequency, and sampling capacitance
To minimize \rightarrow bias current should be much larger than current into sampling capacitance

Example: if $\mathrm{C}_{\mathrm{s}}=4 \mathrm{pF}, \mathrm{f}_{\text {in }}=200 \mathrm{MHz}, \mathrm{A}=1 \mathrm{~V} \rightarrow \mathrm{I}_{\mathrm{Cs}}$ up to 5 mA It can be shown that $\operatorname{SFDR}=100 \mathrm{~dB}$ requires $\mathrm{I}_{\text {bias }} \approx 8 \mathrm{I}_{\mathrm{Cs}} \rightarrow \mathrm{I}_{\text {bias }}=40 \mathrm{~mA}$

Noise in emitter follower

Important: this part is wrong in the book

Channel noise factor $\gamma \rightarrow 2 / 3$ for ideal MOS, 1/2 for ideal BJT
In (d) below \rightarrow a large R_{S} in series with switch trades reduced speed for reduced total noise power, which tends to the minimum limit of $k T / C_{S}$ for $g_{m} R_{s}$ large (impact of $r_{b b}$ and $i_{n, 0}^{2}$ is minimized)

CMOS S\&H

Time constant $R_{o n} C_{S} \rightarrow$ much lower than time allowed for charging C_{S}
If switched voltage has a large range \rightarrow use nMOS and pMOS in parallel \rightarrow total resistance is ideally constant over a large voltage range

Dummy $\mathrm{M}_{\mathrm{D}} \rightarrow$ clock feedthrough compensation
(c) uses a simple source follower for maximizing speed (GHz range) \rightarrow bad linearity, even with $B=S$ to avoid non-liner bulk effect (max. 70 dB , compared to 100dB with BJT for the same current)

(b) (c)

Circuits for Data Converters

Clock feedthrough - II

low B (i.e. fast switching) $\rightarrow 50 \%$ of channel charge flows into sampling capacitance
large $B \rightarrow$ depends on ratio between the two capacitances \rightarrow less predictable
low B is more predictable \rightarrow preferred

$$
B=V_{a d} \sqrt{\frac{\mu C_{o x} W / L}{\alpha C_{S}}}
$$

Feedthrough compensation

Dummy $\mathrm{M}_{\mathrm{D}} \rightarrow$ injects all its channel charge into $\mathrm{C}_{\mathrm{S}} \rightarrow$ should be approx. half as large as the switch \rightarrow this asymmetry reduces the effectiveness of cancellation to 70-80\%

In differential A/D \rightarrow differential cancellation of injection \rightarrow common-mode injection is suppressed by the differential topology, as in (a) below effectiveness of 80-90\%

Another approach is to accept a constant injection = constant offset, as in (b) \rightarrow not an issue if there is no signal at DC

(a)

(b)

(c)

Two-stage OTA as T\&H

Output of a two-stage OTA in unity-gain feedback tracks the input \rightarrow the $1^{\text {st }}$ stage output is the input divided by the $2^{\text {nd }}$ stage gain ((a) below)

Compensation capacitor in OTA can be used as sampling capacitor as well $\rightarrow \mathrm{C}_{\mathrm{C}}$ becomes C_{S} in (b) - voltage at the end of tracking is

$$
V_{\text {out }}(n T)=\frac{\left(V_{\text {in }}(n T)+V_{\text {os }}\right) A_{1} A_{2}}{1+A_{1} A_{2}} \quad V_{1}(n T)=\frac{V_{\text {out }}(n T)}{A_{2}} \approx 0
$$

V_{1} is (almost) zero if A_{2} large \rightarrow constant channel charge \rightarrow feedthrough is just an offset; $1^{\text {st }}$ stage not used during Hold \rightarrow offset auto-zeroing is possible (connect as unity gain buffer, store offset onto a capacitance)
ok for medium-speed if buffering is needed; also, unity-gain configuration requires common-mode range to be the same as the input swing

Data Converters

Feedthrough compensation - II

(b) $\rightarrow S_{3}$ opens slightly earlier than S_{1} (and S_{4} slightly earlier than S_{2}), and some of the channel charge flows into C_{S}; however, node A switches between ground and virtual ground, and to the first order the channel charge in $\mathrm{S}_{3}\left(\mathrm{~S}_{4}\right)$ is signal independent \rightarrow DC offset only (canceled in a differential implementation), no distortion

The channel charge for $S_{1}\left(S_{2}\right)$ is signal dependent, but when S_{1} opens C_{s} is already floating \rightarrow no signal-dependent charge redistribution on C_{s} !
The C_{S} plate connected to ground determines the actual sampling \rightarrow socalled bottom-plate sampling technique

(a)

(b)

(c)

Virtual ground in CMOS S\&H

In general, virtual ground relieves the requirement of a large input common mode
Charge-transferring S\&H below: 1) during Sample $\rightarrow \mathrm{C}_{\mathrm{S}}$ are charged between $\mathrm{V}_{\text {in }}$ and input common mode $\mathrm{V}_{\mathrm{CM}, \text { in }}, \mathrm{C}_{\mathrm{H}}$ between input and output common mode $\mathrm{V}_{\mathrm{CM}, \text { out }} \rightarrow$ offset cancellation and common-mode shift if needed; 2) during Hold $\rightarrow \mathrm{C}_{\mathrm{S}}$ are connected in (anti) series and loop is closed \rightarrow charge transferred to C_{H}, common-mode input is rejected; gain or attenuation possible

Virtual ground in CMOS S\&H - II

Flip-around topology \rightarrow more economic implementation: fewer caps, where C_{S} are first connected to the input, and then in feedback - however, only unity gain possible - however, feedback factor is 1 , while it was $1 / 2$ in the previous circuit \rightarrow flip-around more power efficient (lower open-loop gain-bandwidth-product required for the same sampling frequency)

Neither scheme uses the op-amp during sampling \rightarrow op-amp is in openloop \rightarrow output to $\mathrm{V}_{\text {dd }}$ or ground, long recovery time \rightarrow differential output is shorted and connected to a common-mode voltage during sampling

Noise analysis of flip-around S\&H - II

Hold \rightarrow a) the sampled noise on C_{S} is there also during Hold (of course)
Hold \rightarrow b) because of the virtual ground, the noise from the switch in feedback is found at the output, until it rolls off because of the finite bandwidth of the op-amp

$$
\begin{aligned}
v_{n, \text { out }} & =v_{n} \frac{A}{1+A}=v_{n} \frac{\omega_{T} / s}{1+\omega_{T} / s}=v_{n} \frac{1}{1+s / \omega_{T}} \quad \text { "signal" } \\
v_{n, \text { out }}^{2} & =\frac{4 k T R_{\text {on }}}{1+\left(\omega / \omega_{T}\right)^{2}} \rightarrow V_{n, \text { out }}^{2}=k T R_{\text {on }} \omega_{T} \quad \text { power }
\end{aligned}
$$

(a)

(b)

Noise analysis of flip-around S\&H

Each switch has on-resistance $\mathrm{R}_{\text {on }}$, and a thermal noise voltage (density) of $v_{n}^{2}=4 k T R_{o n}$. The op-amp has an equivalent input noise voltage $v_{n, o p}^{2}$
Every noise generator causes a colored noise spectrum across each capacitor; when the switches open, the sampled noise on the capacitor is given by the integral of the colored spectrum
Uncorrelated noise \rightarrow adds power-wise; Correlated \rightarrow adds signal-wise
During Sample, we have the situation in (a) \rightarrow two switches in series with $\mathrm{C}_{\mathrm{S}} \rightarrow$ since the integrated noise is kT / C independently of R , we have

(a)

(b)

Noise analysis of flip-around S\&H - III

Hold \rightarrow c) The same analysis applies to op-amp noise, $v_{n, o p}^{2}=\frac{4 k T \gamma^{\prime}}{g_{m}}$ Assuming $\omega_{T}=\frac{g_{m}}{C_{L}}$, we have the total output noise power as

$$
V_{n, \text { out }, \text { flip }}^{2}=\frac{k T}{C_{S}}+g_{m} R_{o n} \frac{k T}{C_{L}}+\frac{\gamma^{\prime} k T}{C_{L}}
$$

(a)

(b)

Noise analysis of flip-around S\&H - IV

$$
V_{n, \text { out, flip }}^{2}=\frac{k T}{C_{S}}+g_{m} R_{o n} \frac{k T}{C_{L}}+\frac{\gamma^{\prime} k T}{C_{L}}
$$

The sampling time constant $\mathrm{R}_{\mathrm{on}} \mathrm{C}_{\mathrm{S}}$ is typically lower than $1 / \omega_{T}$, i.e.

$$
R_{o n} C_{S} \ll \frac{C_{L}}{g_{m}}
$$

which means that the second term in the noise expression is negligible \rightarrow

$$
V_{n, o u t, f l i p}^{2} \approx \frac{k T}{C_{S}}+\frac{\gamma^{\prime} k T}{C_{L}}
$$

(a)
(b)

Noise analysis of charge-transfer S\&H

Sampling \rightarrow charge on C_{S} is later transferred to $\mathrm{C}_{\mathrm{H}} \rightarrow$ if the charges on the two caps are correlated, linear (signal-wise) addition \rightarrow assuming $\mathrm{C}_{\mathrm{S}}=\mathrm{C}_{\mathrm{H}}$, the transfer function of noise source \#3 on both C_{S} and C_{H} is

$$
H_{C_{s}}(s)=H_{C_{H}}(s)=\frac{1}{1+3 R_{o n} C_{S} s}=\frac{1}{1+R_{o n}\left(3 C_{S}\right) s}
$$

Considering that during Hold the noise on C_{S} adds signal-wise to the noise on C_{H}, and that this is also the output noise caused by source \#3, we have

$$
v_{m o=}=\sigma_{s} \cdot V_{\text {out }, \# 3}^{2}=(1+1)^{2} \frac{k T}{3 C_{S}}=4 \frac{k T}{3 C_{S}}
$$

$$
\sum_{n=1}
$$

Noise analysis of charge-transfer S\&H - III

Noise source \#5 appears directly at the output, also limited by βf_{T}; noise from the op-amp is amplified $x 2$, and also limited by βf_{T}
Overall \rightarrow assuming the previous expressions for $v_{n, o p}^{2}$ and ω_{T}, and considering that $\beta=1 / 2$, the total noise is

$$
\begin{aligned}
V_{n, \text { out }, \text { tot }}^{2} & =\frac{4 k T}{3 C_{S}}+\frac{2 k T}{3 C_{S}}+2 \cdot k T R_{o n} \beta \omega_{T}+4 \frac{\gamma^{\prime} k T}{g_{m}} \beta \omega_{T} \\
& =\frac{2 k T}{C_{S}}+g_{m} R_{o n} \frac{k T}{C_{L}}+\frac{2 \gamma^{\prime} k T}{C_{L}} \approx \frac{2 k T}{C_{S}}+\frac{2 \gamma^{\prime} k T}{C_{L}}
\end{aligned}
$$

Therefore, for low noise \rightarrow large capacitances, low-noise op-amp \rightarrow hardly a surprise!

CMOS pass gate

nMOS gate to V_{dd}, pMOS to $\mathrm{GND} \rightarrow$ maximum conductance, given by

$$
G_{o n}=\beta_{n} V_{o d, n}+\beta_{p} V_{o d, p} \quad V_{o d, n}=V_{d d}-V_{i n}-V_{t h, n} \quad V_{o d, p}=V_{i n}-\left|V_{t h, p}\right|
$$

If $V_{\text {in }} \leq\left|V_{\text {th, } p}\right|$, the pMOS conductance goes to zero, as does that of the nMOS for $V_{i n} \geq V_{d d}-V_{t h, n}$. If $\beta_{n}=\beta_{p}$, the conductance when both MOS are on is independent of $V_{\text {in }}$, and equal to

$$
G_{o n}=\beta_{n}\left(V_{d d}-V_{t h, n}-\left|V_{t h, p}\right|\right)
$$

(b)
(d)

CMOS pass gate - II

This means that the conductance decreases with the supply voltage, and can become zero if

$$
V_{d d} \leq V_{t h, n}+\left|V_{t h, p}\right|
$$

Usually, modern processes offer devices with low $\mathrm{V}_{\text {th }}$ - however, this increases the cost of the product because of added process steps; it is also possible to use thick-oxide MOS, which allows a (much) higher V_{dd} (double supply voltage required, extra process step)

(b)

Switched op-amp technique

Flip-around S\&H
$V_{\text {low }}$ is low (close to ground) \rightarrow no problem driving switch S_{b}
At the output \rightarrow the whole output op-amp stage is switched off (i.e., the output impedance becomes very high) at nodes close to V_{dd} and ground \rightarrow no problem

In this way, C_{S} can be connected to the input without having to disconnect the OTA with a switch

The only critical element is S_{in}, whose channel must allocate the whole signal range

Bootstrapping

In principle, one could generate high gate voltages with a charge pump, but this is (probably) not possible because of strict maximum voltage limitations in today's CMOS processes

Bootstrapping ensure that the gate-to-source and gate-to-drain voltages are always below the allowed limits.

The basic approach is shown below $\rightarrow \mathrm{C}_{\mathrm{B}}$ (charged to $\mathrm{V}_{\text {dd }}$) sustains the V_{Gs} of the sampling switch M_{S} through switches S_{3} and S_{4} during on; during off, $S_{\text {OFF }}$ grounds the gate of M_{S}, and S_{1} and S_{2} charge C_{B} to $V_{\text {dd }}$.
In reality, because of the par. cap. C_{p}, the voltage at the gate of M_{S} becomes

Data Converters

Bootstrapping - III

1) S_{1} must be able to switch on/off $V_{d d}$; 2) S_{3} must sustain the boosted voltage during on; 3) S_{4} must operate under the same conditions as the main switch $\left.M_{S} ; 4\right) S_{\text {OFF }}$ must be able to swing between the boosted voltage and zero

A possible circuital solution is shown below

$V_{G S}$ for M_{S} becomes

$$
V_{G S}=V_{d d} \frac{C_{B}}{C_{p}+C_{B}}-V_{i n} \frac{C_{p}}{C_{p}+C_{B}}
$$

which is below V_{dd} and (almost) input independent - the on-conductance of M_{S} becomes

$$
G_{o n}=\beta\left(V_{d d} \frac{C_{B}}{C_{p}+C_{B}}-V_{i n} \frac{C_{p}}{C_{p}+C_{B}}-V_{t h}\left(V_{\text {in }}\right)\right)
$$

$\mathrm{G}_{\text {on }}$ is input-dependent mainly through the body effect \rightarrow good for linearity Direct-biasing of channel-substrate diodes should be avoided, and protection for drains undergoing large voltage wings should be provided

Bootstrapping $-2 \times \mathrm{V}_{\text {dd }}$ generation

S_{1} is nMOS \rightarrow control of its gate requires a voltage doubler $\rightarrow M_{d 1}, M_{d 2}, C_{1}$, C_{2}, Inverter \rightarrow the gate of M_{1} is at $2 \mathrm{~V}_{\text {dd }}$ during $\Phi_{\text {off }}$ and at $\mathrm{V}_{\text {dd }}$ during $\Phi_{\text {on }} \rightarrow$ C_{B} charges to $\mathrm{V}_{\text {dd }}$ during $\Phi_{\text {off }} ; \mathrm{M}_{1}$ is off during $\Phi_{\text {on }}$

Bootstrapping - more features

M_{po} reduces the V_{ds} and V_{gd} experienced by M_{o} during $\Phi_{\text {off }}$ Body of M_{3} connected to source \rightarrow no latch-up hazard
$M_{i 3}$ ensures that $V_{S G 3}$ never exceeds $V_{d d}\left(M_{i 1}\right.$ is cut off when the input voltage $I N$ reaches a value for which $\Phi_{o n}-I N<V_{t h, n}$)
It is easier to implement M1 as an NMOS than as a PMOS, since a PMOS would start conducting during $\Phi_{\text {on }}$ as soon as $I N+V_{d d}-V_{g, M 1}\left(=V_{d d}\right)>\left|V_{t h, p}\right|$

None of the terminal-to-terminal device voltages exceeds $\mathrm{V}_{\text {dd }}$ for any device

Current folding with MOS

8 -segment folding of input current - the use of comparators in more efficient than a diode MOS; the comparator detects an increase of the respective MOS source voltage and turns on the switch - the threshold V_{B} should be slightly higher than $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{tn}, \mathrm{h}}$ - comparators increase complexity and power consumption, but the voltage drop across the switches is small, and many cells can be cascaded

Current folding with BJTs

4-segment folding of input current \rightarrow if $\mathrm{I}_{\text {in }}$ is zero, two bias currents I_{E} flow into one branch, two into the other \rightarrow the diff. output voltage $\mathrm{V}_{\text {out, } \mathrm{d}}$ is zero If now $0<\mathrm{I}_{\text {in }}<\mathrm{I}_{\mathrm{E}}$, the current through Q_{1} is reduced, and we have $V_{\text {out }, d}=R_{L} I_{\text {in }}$ When $I_{\text {in }}$ becomes higher than I_{E}, the current through Q_{1} is zero and some current is taken from Q_{2}, obtaining $V_{\text {out }, d}=-R_{L} I_{\text {in }}$; when D_{2} becomes active, the output voltage becomes positive again, to return to negative when D_{3} is turned on

Notice that the input voltage must increase by one diode voltage for every active cell \rightarrow dynamic range at input sets the limit to the number of cells

Voltage folding

Segments (here: 4) generated by the linear region in the transfer function of a differential pair $-2 \mathrm{~V}_{\mathrm{T}}$ for BJT, $2 \mathrm{~V}_{\text {od }}$ for MOS - too small \rightarrow extended with degeneration resistors by as much as $2 I_{S} R_{D}$, as the diff. pair becomes fully unbalanced for an input voltage of $\pm\left(I_{S} R_{D}+V_{o d}\right) \rightarrow$ the differential output voltage changes by $\pm 2 I_{S} R_{L}$

Voltage-to-current conversion

(a): cascoding is often needed; can be simplified as in (b), where pMOS are used to avoid the body effect; however, the g_{m} of the transistors should be much higher than 1/R; further, it is less linear, although the differential circuits cancels some non-linearity. (c): g_{m} is amplified by the op-amp gain (body effect reduced by the same amount)

Improved V-I conversion

Current through $M_{1}\left(M_{2}\right)$ kept constant by feedback, together with avoidance of body effect $\rightarrow \mathrm{V}_{\text {in+ }}\left(\mathrm{V}_{\text {in- }}\right)$ is copied at the source of $\mathrm{M}_{1}\left(\mathrm{M}_{2}\right) \rightarrow$ the signal current flows into $M_{3}\left(M_{4}\right)$, and copied to the output by $M_{5}\left(M_{6}\right)$ More precisely: $V_{i n, R} \approx V_{i n+} \frac{-\beta A}{1-\beta A}$, where βA is the loop gain of the feedback:

$$
\beta A \approx-g_{m 3} \frac{g_{m 1}}{g_{m 1}+2 / R+g_{d s 3}+g_{d s 7}} R_{\text {out }, A} \approx-g_{m 3} R_{\text {out }, A} \frac{g_{m 1}}{g_{m 1}+2 / R}
$$

A loop gain of $30-40 \mathrm{~dB}$ is possible \rightarrow linearity improvement sufficient in many applications

Example 5.4

$\pm 0.5 \mathrm{~V}$ input range, $\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {od }}=400 \mathrm{mV} \rightarrow$ determine R for $\mathrm{SFDR}=85 \mathrm{~dB}$ and SFDR=95dB
The large-signal resistance is $R_{T}=R+\frac{V_{o d}}{2\left(I_{B}+I_{\text {out }}\right)}+\frac{V_{\text {od }}}{2\left(I_{B}-I_{\text {out }}\right)}=R+\frac{V_{\text {od }} I_{B}}{I_{B}^{2}-I_{\text {out }}^{2}}$
The differential input determines (implicitly) the output current as

$$
\Delta V_{\text {in }}=R I_{\text {out }}+\frac{V_{\text {od }} I_{B} I_{\text {out }}}{I_{B}^{2}-I_{\text {out }}^{2}}
$$

from which we obtain $I_{\text {out }} \approx k_{1} \Delta V_{\text {in }}+k_{3} \Delta V_{\text {in }}^{3}+k_{5} \Delta V_{\text {in }}^{5}+k_{7} \Delta V_{\text {in }}^{7}+\ldots$, and

$$
S F D R \approx \frac{k_{1} \Delta V_{i n}}{\frac{1}{4} k_{3} \Delta V_{i n}^{3}}=\frac{4 k_{1}}{k_{3} \Delta V_{i n}^{2}}
$$

For the above SFDR requirements, we need
$\mathrm{R}=12.5 \mathrm{k} \Omega$ and $18.5 \mathrm{k} \Omega$, respectively

Data Converters
Circuits for Data Converters

Generation of clock phases

Usually, at least two non-overlapping (to avoid charge leakage) phases are needed (overlapping may be needed e.g. to keep feedback during phase transition)

NOR based \rightarrow non-overlapping; NAND-based \rightarrow overlapping, need one more inversion for non-overlapping
Non-overlap time \rightarrow three inverter delays

Data Converters
Circuits for Data Converters

