Nyquist-rate D/A Converters

- Introduction
- Type of converters
- Architectures based on resistors
- Architectures based on capacitors
- Architectures based on current sources
- Other architectures

Pietro Andreani

Dept. of Electrical and Information Technology Lund University, Sweden

Introduction

The input of a DAC is a multi-bit digital signal, while the output is a voltage or a current capable of driving an external load

Often a current is used to drive an off-chip coaxial cable to yield a

Introduction (II)

- Many DACs use integrated resistance or capacitances to attenuate (or amplify) the reference
- A careful layout design (common-centroid, dummy components, temperature-insensitive, etc) leads to matching accuracies in the order of $0.02-0.1 \% \rightarrow$ resolutions up to $60-70 \mathrm{~dB}$ are possible without trimming of analog passive components, and without using digital correction or digital calibration
- Use of analog CMOS switches \rightarrow low on-resistance, high speed of switching, minimum side effects
- Natural in CMOS processes (MOS device is a better switch than transistor)
- Complementary MOS or bootstrapped nMOS (gate voltage is a shifted-up replica of the signal to be switched)
voltage across the terminations
- Control of clock feedthrough (MOS channel charge flowing to D/S when the gate control goes off)

DAC applications

Voltage and current references

- Video: HDTV monitors display more than 1000 lines per frame, in addition to a higher contrast ratio and a more detailed color range
- To maximize the viewing quality on a state-of-the-art display, a 12 -bit 150 MSPS conversion rate are often necessary
- Wired: DACs for ADSL and ADSL2+ must handle signal bands of 1.1 MHz or 2.2 MHz with 12 -bit resolution
- Wireless: UMTS, CDMA2000, GSM/EDGE require high conversion rates and high resolutions when multiple carriers are used
- Conversion rates of 200-1000MSPS and 12-16 bits of resolution may be necessary
- Audio: typically, 16 bits or more to headphones/speakers, with a conversion rate of 44 kSPS

Voltage and current references can be either generated inside the chip, or provided via an external pin

Any error affecting the references limits the overall system performance \rightarrow should be constant independently of PVT variations, load, and time
Static errors are usually irrelevant; dynamic errors are much more important \rightarrow speed and linearity are affected

The noise level must be well below the quantization floor:

$$
v_{R e f, n}^{2} \ll \frac{v_{F S}^{2}}{6 \cdot 2^{N} f_{s}} \quad \text { or } \quad i_{R e f, n}^{2} \ll \frac{I_{F S}^{2}}{6 \cdot 2^{N} f_{s}}
$$

Data Converters
Nyquist-rate D/A Converters

Types of converters

The basic components used in a DAC architecture normally classify the DAC. We distinguish between:

- Architectures based on resistors
- Architectures based on capacitors
- Architectures based on current sources
and even a single transistor with $g_{m}=0.2 \mathrm{~mA} / \mathrm{V}$ gives rise to a noise voltage density as large as

$$
v_{n}=7.4 n V / \sqrt{H z}
$$

The request on the noise floor of the reference becomes very challenging for resolutions above 14 bits: if $\mathrm{I}_{\mathrm{FS}}=20 \mathrm{~mA}$, the noise spectrum of the current reference must be below $0.79 \mathrm{nA} / \mathrm{sqrt}(\mathrm{Hz})$, which, across 50Ω, results in a noise voltage density of $39.5 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$ (fairly low)

As a comparison, the spectral density of the input-referred noise of a MOS transistor is

$$
v_{n}^{2} / \Delta f=4 k T \gamma / g_{m}
$$

Resistor based

Strips of resistive layers with a given specific resistance, ρ_{\square}. The effective number of squares, $(L / W)_{\text {eff }}$, and the contact resistance $R_{\text {cont }}$

Resistive (Kelvin) divider, invented by Lord Kelvin in the 18th century give the total resistance value (ρ_{\square} ranges from a few Ω / \square to $\mathrm{k} \Omega / \square$)

Absolute R-value only important for power and area consumption; relative value (matching) is what really counts

Data Converters

Unary selection

Only one switch on the divider-to-buffer path, but many control lines

The decoding method used to select the divider voltage depends on a trade-off between speed, complexity, and power consumption

Matrix selection

A limit to the ladder DAC is set by the number of switches/control-lines $\left(2^{n}\right)$ required. The matrix approach reduces the complexity to $2 \cdot 2^{n / 2}$, however with two switches in series

In this example, $\mathrm{n}=8$, the DAC is partitioned in 4 MSBs (rows) and 4 LSBs columns)

Settling of the output voltage

Assume the speed of the buffer very large \rightarrow the voltage at the input and output of the buffer depends only on the divider, approximated by an RC time constant. If the output k is selected, then

$$
\begin{gathered}
R_{e q}=\frac{(k-1) R_{U} \cdot\left(2^{N}-k+1\right) R_{U}}{(k-1) R_{U}+\left(2^{N}-k+1\right) R_{U}}+N_{o n} R_{o n}=\frac{(k-1)\left(2^{N}-k+1\right)}{2^{N}} R_{U}+N_{o n} R_{o n} \\
C_{i n}=C_{i n, B}+N_{o n} C_{p, o n}+N_{o f f} C_{p, o f f}
\end{gathered}
$$

$\mathrm{C}_{\mathrm{in}, \mathrm{B}}$ is the input capacitance of the buffer; $\mathrm{N}_{\text {on }}$ and $\mathrm{N}_{\text {off }}$ are on and off switches connected to the buffer input (their number is constant); and $C_{p, \text { on }} \approx C_{p, \text { off }}$ are the associated parasitic capacitances
$\mathrm{C}_{\text {in }}$ is almost constant, $\mathrm{R}_{\text {eq }}$ depends on the selected tap (parabolic, maximum at mid-point) \rightarrow signal-dependent time constant \rightarrow distortion!! \rightarrow unit resistor should be small enough

X-Y selection with shunt resistances

R_{S} in parallel to $k R_{U}$ units: higher speed, but also higher power consumption; for each line, the equivalent resistance is
$R_{e q}(t)=k R_{U} \| R_{S}=\frac{k R_{U} R_{S}}{k R_{U}+R_{S}}$

Settling of the output voltage

If slew-rate and bandwidth of the buffer matter (disregarding RC from divider): assume input step $\Delta V_{\text {in }}(0)$:

From
continuity $\quad V_{\text {out }}(t)=V_{\text {in }}\left(0^{-}\right)+S R \cdot t \quad$ for $t<t_{\text {sle }}$
of first
derivative $V_{\text {out }}(t)=V_{\text {in }}\left(0^{-}\right)+\Delta V_{\text {in }}(0)-\Delta V \cdot e^{-\left(t-t_{\text {scew }}\right) / \tau}$ for $t>t_{\text {slew }}$

$$
\Delta V / \tau=S R \quad \tau=1 / 2 \pi \beta f_{T} \quad t_{\text {slew }}=\frac{\Delta V_{\text {in }}(0)}{S R}-\tau
$$

$\beta=$ feedback factor; $f_{T}=$ unit gain frequency of op-amp

Settling of the output voltage (II)

Remarks on linearity

Non-linear combination of linear ramp and exponential ramp
Reconstruction filter yields the time average of the output waveform \rightarrow

- If linearity is an important issue, remember:
average of non-linear error causes distortion
- A code-dependent settling of the output causes distortion

If the settling time is long enough, the integrated error during the slewing period (area A in figure) is

- A high SFDR requires a low resistance at every node \rightarrow the variation of the settling time must be much smaller than the hold period

$$
\frac{1}{2}\left(\frac{\Delta V_{\text {in }}}{S R}-\Delta V\right) t_{\text {slew }}+\Delta V \cdot t_{\text {slew }}=\frac{1}{2}\left(\frac{\Delta V_{i n}^{2}}{S R}-S R \cdot \tau^{2}\right)
$$

while during the settling period is

$$
\Delta V_{i n} \cdot \tau
$$

In both cases, it is signal dependent \rightarrow distortion may be an issue For a quantitative estimate of distortion, a transistor-level simulation is required

Segmented resistive DAC - principle

The use of shunting resistors has generated an auxiliary $n / 2$-bit DAC \rightarrow evolution: segmentation achieves a high-resolution DAC by combining the operation of two or more DACs (3+3 bits in DAC below: cascade of 3-bit MSB DAC + eight 3-bit LSB DACs)

Segmented DAC

Only one LSB DAC is in fact needed - buffers must have the same offsets, high input impedance and low output impedance, and an input common-mode range of $\mathrm{V}_{\text {ref }}$
It is also possible to replace buffers with current sources: there is no current flowing from LSB DAC to MSB DAC if the equation on the right is satisfied

Data Converters

$$
\begin{aligned}
I_{L} & =\frac{\Delta V_{L S B}}{2^{n_{L S B}} R_{L}} \\
& =\frac{V_{\text {ref }}-V_{\text {ref }-}}{2^{n_{\text {MSB }}} 2^{n_{L S B}} R_{L}}
\end{aligned}
$$

Effect of mismatch

Mismatch with linear gradient

The $i^{\text {th }}$ resistance is

$$
R_{i}=R_{u}\left(1+\varepsilon_{a}\right)\left(1+\varepsilon_{r, i}\right)
$$

where ε_{a} is the absolute error, and $\varepsilon_{r, \mathrm{i}}$ is the relative mismatch. Voltage
A straight string with unity elements spaced by $\Delta \mathrm{X}$ and gradient α in their relative values gives
at tap k is

$$
V_{\text {out }}(k)=V_{\text {ref }} \frac{\sum_{0}^{k} R_{i}}{\sum_{0}^{2^{n-1}} R_{i}} \quad k=0 \ldots 2^{n}-1
$$

and is of course independent of ε_{a} :

$$
V_{\text {out }}(k)=V_{\text {ref }} \frac{k+\sum_{0}^{k} \varepsilon_{r, i}}{2^{n-1}+\sum_{0}^{2^{n-1}} \varepsilon_{r, i}} \quad k=0 \ldots 2^{n}-1
$$

The error depends on the accumulation of mismatches and is zero at the two endings of the string

$$
R_{k}=R_{0}(1+k \alpha \Delta X) \quad k=0 \ldots 2^{n}-1
$$

and the output at the tap k becomes

$$
V_{\text {out }}(k)=V_{\text {ref }} \frac{k+\alpha \Delta X \cdot k(k+1) / 2}{2^{n}-1+\alpha \Delta X \cdot\left(2^{n}-1\right) 2^{n} / 2}
$$

\rightarrow parabolic with initial value 0 and final value $\mathrm{V}_{\text {ref }}$

INL with linear gradient: straight and folded line

Recall that $\operatorname{INL}(k)=V_{\text {out }}(k)-\overline{V_{\text {out }}(k) \text {. Curves (a) and (b) show the INL }}$ for $\alpha \Delta x= \pm 10^{-4}$, and result in a maximum INL of $\pm 0.8 \mathrm{LSB}$

If the divider layout is folded around the mid-point, then the mid-point voltage is correct; for the same value of the gradient, the maximum INL becomes ± 0.2 LSB, curve (c). Careful layouts are generally required

Example

Harmonic distortion caused by a linear gradient:
Consider a gradient $\alpha=2.5 \cdot 10^{-5} / \mu$ in the resistivity of a straight string of resistors spaced by $\Delta X=4 \mu$. The DAC is a resistive-string divider connected between 0 V and 1 V .

The FFT of an input sequence made of 2^{12} points gives a noise floor for an 8-bit DAC at

$$
n_{Q}=-1.78-6.02 \cdot 8-10 \log \left(2^{12} / 2\right)=-83 \mathrm{dBc}
$$

which is enough for detecting spurs higher than -65 dBc (18 dB above the noise floor)

Simulations/calculations

$V_{\text {in }} \approx V_{\text {ref }} \frac{k}{2^{n}} \quad$ and $\quad V_{\text {out }}(k)=V_{\text {ref }} \frac{k+\alpha \Delta X \cdot k(k+1) / 2}{2^{n}-1+\alpha \Delta X \cdot\left(2^{n}-1\right) 2^{n} / 2} \rightarrow$

$$
\begin{aligned}
V_{\text {out }}(k) & \approx \frac{2^{n}\left[V_{\text {in }}(1+\alpha \Delta X / 2)+V_{\text {in }}^{2} \cdot 2^{n} \alpha \Delta X /\left(2 V_{\text {ref }}\right)\right]}{2^{n}-1+\alpha \Delta X \cdot\left(2^{n}-1\right) 2^{n} / 2} \\
& \approx V_{\text {in }}(1+\alpha \Delta X / 2)+V_{\text {in }}^{2} \cdot 2^{n} \alpha \Delta X /\left(2 V_{\text {ref }}\right)
\end{aligned}
$$

Effect of random mismatch on resistors

Even if the resistor variations are as high as 10\%, but they are not correlated \rightarrow noise floor is increased, but very small distortion (DNL is high, but INL is very low)

Trimming and calibration

- Mismatch effects are often investigated with Monte Carlo simulations
- Trimming corrects statically the mismatches caused by inaccuracies in the fabrication process
- Thin-film technologies that realize resistors on top of the passivation layer of the IC are particularly suitable; resistors are trimmed very accurately with a laser
- Use of fuses or anti-fuses for respectively opening or closing the interconnections of a network of resistive elements
- Connection with fuses or anti-fuses is done during testing (either before or after packaging) and is permanent

Calibration

- Switches turned on or off at power-on (off-line calibration) or during the normal operation of the converter (without interfering, on-line calibration)
- Calibration is not permanent \rightarrow can compensate for slow drift, like aging or (for on-line) temperature effects
- Correction at the group level instead than correcting all the elements

Alternative approach: digital potentiometer

- Slight variation of the resistive ladder topology
- Same functionality as the conventional potentiometer, except that the wiper terminal is controlled by a digital signal, so only discrete steps are allowed
- Selection of the wiper position controlled via an n-bit register value
- Communication and control of the device can be supported by a parallel or serial interface
- Volatile or non-volatile logic to retain the wiper setting. For volatile logic, the wiper is normally set at mid-range at power-up

R-2R resistor ladder DAC

Reduces the total number of resistors from 2^{n} to $(2+1) n=3 n$
The resistance to the left of every node is $2 R$!
voltage mode

(b)

Data Converters

Voltage mode

R-2R resistor ladder with buffer

It can be verified that connecting the $k^{\text {th }}$ switch to $V_{\text {ref }}$ leads to a contribution

$$
V_{\text {out }}=V_{\text {ref }} / 2^{k}
$$

The output of the R-2R ladder in the voltage mode is the superposition
voltage mode of terms that are the successive divisions of $\mathrm{V}_{\text {ref }}$ by 2

$$
V_{o u t}=\frac{V_{r e f}}{2} b_{n-1}+\frac{V_{r e f}}{4} b_{n-2}+\ldots+\frac{V_{r e f}}{2^{n-1}} b_{1}+\frac{V_{r e f}}{2^{n}} b_{0}
$$

which is the DAC conversion of the digital input

(a)

Limits of R-2R resistor ladder

- About the output resistance of the reference source: the load seen by the voltage ref. source is code-dependent \rightarrow this may cause harmonic distortion \rightarrow use reference generators whose output impedance is much lower than the load in any case
- About the R-2R algorithm: the input-output characteristics of the R-2R ladder (either voltage or current mode) is NOT intrinsically monotonic (as it was for the resistive ladder)
- This is because in the R-2R ladder an increment by an LSB switches the connection in all those arms whose control bit changes \rightarrow because of random mismatches, it may happend that an increase by 1 switches off a contribution whose value is higher than the amount that is switched on \rightarrow worst case is at midpoint

Current mismatches

Mismatch is problematic in the current-mode circuit as well, as an error in the binary division can cause non-monotonicity
Consider the switching at mid scale: $I_{\text {ref }}\left(1 / 2-1 / 2^{n}\right) \rightarrow I_{\text {ref }} / 2$ If, because of mismatches, the MSB current is $I_{r e f}(1-\varepsilon) / 2$, the midscale transistion becomes

$$
I_{r e f}\left(1 / 2-1 / 2^{n}\right) \rightarrow I_{r e f}(1-\varepsilon) / 2
$$

The step amplitude is $\Delta I \approx I_{\text {ref }}\left(-\varepsilon / 2+1 / 2^{n}\right)$

[^0]The current-mode circuit performs a successive division-by-2 of the reference current $I_{\text {ref }}$, provided that the voltage at the output node is (virtual) ground
The superposition of the currents selected by the switches yields the output current

$$
I_{o u t}=\frac{I_{r e f}}{2} b_{n-1}+\frac{I_{r e f}}{4} b_{n-2}+\ldots+\frac{I_{r e f}}{2^{n-1}} b_{1}+\frac{I_{r e f}}{2^{n}} b_{0}
$$

- The parasitic capacitance of the switched node remains at the same voltage (analog ground or virtual ground) independently of the code (desirable: faster switching, linear)
- Glitches (because of large switched currents) may affect the dynamic response of the current-mode R-2R (undesirable, of course)

Replacing resistors with MOS

For medium accuracy, area can be saved by replacing passive resistors with MOS devices, as in the current-mode ladder below.
Observe that two equal parallel MOS networks divide the input current into two equal parts regardless of the non-linear response of the single element, as long as the two networks operate at the same (non-linear) point.

A track-and-hold (T\&H) after the DAC can highly improve the performance removing the glitches. However, the linearity of the T\&H must be at least 10 dB higher than DAC, which may be difficult to obtain

Integrated capacitors

Capacitors may be implemented with parallel plates (poly-oxide-poly, metal-insulator-metal (MIM)), or with vertical plates (see right), which yields denser capacitors in modern fine-line processes with up to 10 different metal levels

N-bit capacitor-divider DAC

Attenuation capacitor

The attenuation capacitor C_{A} reduces the capacitor count
The largest element in the right array is $2^{\frac{n}{2}-1} C_{U}$ instead of $2^{n-1} C_{U}$ The total capacitance drops from $2^{n} C_{U}$ to $\left(2 \cdot 2^{n / 2}-1\right) C_{U}$
The value of C_{A} is found by considering that C_{A} in series with the left array must yield C_{u} :

$$
\frac{C_{A} \cdot 2^{\frac{n}{2}} C_{U}}{\underline{n}}=C_{U}
$$

yielding $C_{A}=\frac{2^{\frac{n}{2}}}{2^{\frac{n}{2}}-1} C_{U}$

$$
C_{A}+2^{\frac{1}{2}} C_{U}
$$

Unfortunately, the value of C_{A} is a fraction of C_{U} : obtaining the desired accuracy requires a great deal of care in the layout; furthermore, C_{A} is floating, and its bottom-plate capacitance is in parallel to the left array

Capacitive multiplying DAC (MDAC)

Avoids the demands on large input dynamic range for the op-amp (and performs offset cancellation as well)

Flip-around MDAC

The previous MDAC has as many as $2^{n+1}-1 \mathrm{C}_{\mathrm{U}}$. The "flip-around" MDAC has only half as many, by charging k capacitors to $\mathrm{V}_{\text {ref }}-\mathrm{V}_{\text {off }}$ (all others to $-\mathrm{V}_{\text {off }}$) during Φ_{R} and then connecting them in parallel to the other $2^{n}-k$ capacitors. During the active phase, all caps are tied together and connected to the output, performing charge sharing. Topplate parasitics are discharged and then kept to virtual ground, while bottom-plate parasitic caps are driven by voltage sources.

A reminder

- Any capacitor-based DAC architecture requires a reset phase to make sure that the capacitor array is initially discharged
- The output is not valid during reset \rightarrow a track and hold is required to sustain the output during reset

(a)

Data Converters

Hybrid capacitive-resistive DAC

Resistance ladder implements the MSB conversion (3 bits here) while the capacitive flip-around DAC performs the LSB conversion (n bits)

Current-based DAC

k currents out of $2^{n}-1$ are steered toward the output node, obtaining, as usual

$$
I_{\text {out }}=I_{u}\left(b_{0}+2 b_{1}+2^{2} b_{2}+\ldots+2^{n-1} b_{n-1}\right)
$$

Simplified model of single current cell

$$
V_{\text {out }}=k I_{N} \frac{R_{L} \cdot R_{N} / k}{R_{L}+R_{N} / k}=I_{N} R_{L} \frac{k}{1+\alpha k} ; \quad \alpha=\frac{R_{L}}{R_{N}}
$$

$\mathrm{V}_{\text {out }}$ depends non-linearly on k, i.e. on the signal \rightarrow distortion!

Distortion

$$
V_{o u t, \max }=I_{N} R_{L} \frac{2^{n}-1}{1+\alpha\left(2^{n}-1\right)} ; \quad V_{\text {out }, \max , n o m}=I_{N} R_{L}\left(2^{n}-1\right)
$$

The endpoint-fit INL measured in LSBs is then

$$
\operatorname{INL}(k)=\frac{X^{\prime}(k) \frac{V_{\text {out }, \text { max }, \text { nom }}}{V_{\text {out }, \max }}-X(k)}{I_{N} R_{L}}=\frac{k\left(1+\alpha\left(2^{n}-1\right)\right)}{1+\alpha k}-k ; \quad k=0 \ldots 2^{n}-1
$$

Its maximum is at mid-scale, and is approximately $I N L_{\max }=\alpha \cdot 2^{2 n-2}$

$$
I N L<1 L S B \rightarrow R_{u}>R_{L} \cdot 2^{2 n-2} ; \text { if } R_{L}=25 \Omega, n=12 \rightarrow R_{u}>100 M \Omega
$$

If we have a full-scale sinusoidal input with amplitude $k_{p}=2^{n-1}$, the fundamental output harmonic has amplitude $I_{N} R_{L} k_{p}$, while the $2^{\text {nd }}$ harmonics has amplitude $I_{N} R_{L} \alpha k_{p}^{2} / 4$, resulting in an SDR of $R_{L} / R_{u} \cdot 2^{n} / 4$. With the above values, $\mathrm{SDR}=-72 \mathrm{~dB}$

To summarize

- The output resistance of the unity current source causes second-order harmonic distortion
- The use of differential architectures eliminates (ideally) all even-order distortion, relaxing the requirements on the unit current source
- A load resistance (coaxial cable) is only needed for very high speed applications; for lower speeds, op-amps can be used to present a virtual ground to the DAC, again much relaxing the requirements on the output impedance of the current sources

(a)

$$
R_{\text {out }}=r_{d s 2}\left(g_{m 4} r_{d s 4}\right)
$$

- Using current sources with high output resistance secures linearity at low frequencies - at high frequencies, parasitic (non-linear) capacitances dominate
- In general, complex schemes reduce the speed of operation

Random mismatch in current mirrors

$$
I_{D}=\frac{\beta}{2}\left(V_{g s}-V_{t h}\right)^{2} ; \quad \beta=\mu C_{o x} \frac{W}{L}
$$

Assume mismatches on β and V_{th} :

$$
I_{1}=\bar{I}\left(1+\frac{\Delta \beta}{\beta}+\frac{2 \Delta V_{t h}}{V_{g s}-V_{t h}}\right) \quad I_{2}=\bar{I}\left(1-\frac{\Delta \beta}{\beta}-\frac{2 \Delta V_{t h}}{V_{g s}-V_{t h}}\right)
$$

Assume $\Delta \beta$ and $\Delta \mathrm{V}_{\text {th }}$ are uncorrelated \rightarrow the total error becomes

$$
\frac{\Delta I^{2}}{I^{2}}=\frac{\Delta \beta^{2}}{\beta^{2}}+\frac{4 \Delta V_{t h}^{2}}{\left(V_{g s}-V_{t h}\right)^{2}} \quad \text { with } \quad \frac{\Delta \beta^{2}}{\beta^{2}}=\frac{A_{\beta}^{2}}{W L} ; \quad \Delta V_{t h}^{2}=\frac{A_{V_{t h}}^{2}}{W L}
$$

A_{β} and $A_{V_{t}}$ are process constants; to halve the error, the device area must increase 4 times

Example - scaling of transistor size

The required $\Delta I / I$ (for a given yield) for a 12-bit current-steering DAC is $0.3 \% ; \mu \mathrm{C}_{0 x}$ is $39 \mu \mathrm{~A} / \mathrm{V}^{2}$, the unit current I_{U} is $4.88 \mu \mathrm{~A} ; \mathrm{A}_{\mathrm{Vth}}$ is $2 \mathrm{mV} \cdot \mu$ and A_{β} is $0.3 \% \cdot \mu$. Plot $\Delta \mathrm{I} / \mathrm{I}$ as a function of the MOS area. Estimate the MOS size for an a gate overdrive of 0.4 V
$(W L)_{\min }=\left(A_{\beta}^{2}+\frac{4 A_{V_{t h}}^{2}}{\left(V_{g s}-V_{t h}\right)^{2}}\right) / \frac{\Delta I^{2}}{I^{2}}$
$W L=12.11 \mu^{2}$,
$\beta=2 I_{U} / V^{2}{ }_{\text {ov }}=60.0 \mu \mathrm{~A} / \mathrm{V}^{2}$,
W/L=1.56
$\mathrm{W}=4.35 \mu \mathrm{~m}$
$\mathrm{L}=2.78 \mu \mathrm{~m}$

Random mismatch with unary selection

The endpoint-fit error for k selected unit current sources is

$$
\begin{gathered}
\Delta I_{\text {out }}(k)=\sum_{i}^{k} \Delta I_{r, j}-k \overline{\Delta I_{r}}+\sum_{i}^{k} \Delta I_{s, j}-k \overline{\Delta I_{s}} \\
\text { "random" } / \text { "systematic" }
\end{gathered}
$$

where $\overline{\Delta I_{r}}$ and $\overline{\Delta I_{s}}$ are average errors cancelling the possible gain error Explicitly, we have that the gain g at the endpoint is given, with I_{u} unary current, by (considering only random effects):

$$
\sum_{1}^{2^{n}} \Delta I_{r, i}+2^{n} I_{u} \equiv g \cdot 2^{n} I_{u} \quad \rightarrow \quad g=\frac{2^{-n} \sum_{1}^{2^{n}} \Delta I_{r, i}+I_{u}}{I_{u}}
$$

The gain-normalized current error becomes:

$$
\Delta I_{o u t, r}(k)=\frac{\sum_{1}^{k} \Delta I_{r, i}+k I_{u}}{g}-k I_{u}=\frac{\sum_{1}^{k} \Delta I_{r, i}-k 2^{-n} \sum_{1}^{2^{n}} \Delta I_{r, i}}{1+\frac{2^{-n}}{I_{u}} \sum_{1}^{2^{n}} \Delta I_{r, i}}
$$

Random mismatch with unary selection - III

Random mismatch with unary selection - IV

With a normal distribution of $x=\Delta I_{r} / I_{u}$, the probability of having an error equal to x is (with σ is the variance of x)

The normal distribution results in a yield of 0.99 at 2.57σ, and a yield of 0.999 at 3.3σ. In order to comply with these yields, we must then have:

$$
\begin{aligned}
2.57 \sigma<2^{-n / 2} \rightarrow & \sigma=\Delta I_{r} / I_{u}<0.39 \cdot 2^{-n / 2} \\
& \text { and } \\
3.3 \sigma<2^{-n / 2} \rightarrow & \sigma=\Delta I_{r} / I_{u}<0.30 \cdot 2^{-n / 2}
\end{aligned}
$$

However, it must be considered that this analysis does not account for the effect of systematic mismatch, which can be even worse than the random mismatch

Selection of current sources

Unit current sources are usually arranged in a two-dimensional array. The simplest selection mode is a sequential unary thermometric selection by lines and columns, starting in one corner of the array. Below we see an 8 -bit DAC where 70 cells are selected (code 01000110)

Selection of current sources

The goal is to randomize the mismatches, keeping the accumulated error low

(a)

(b)
a) Line and column shuffling (in common-centroid fashion); b) Use of multiple local references, each close to the respective sector \rightarrow lower threshold mismatch; c) multiple reference + random walk selection of sectors and unit cells \rightarrow turns correlated error into pseudo-random noise

Data Converters

Segmentation with current switching

Conceptual schematic of a 3-step segmented current-steering DAC

Area of segmented DAC - II

- The area of the logic circuitry necessary to generate and distribute a single thermometric code increases (roughly) linearly with the number of MSB:

$$
A_{U-M S B, \text { extra }}=A_{d} n_{M}
$$

- For a segmentation $n=n_{L}+n_{M}$, we obtain in total

$$
\begin{gathered}
A_{D A C}=2^{n} A_{U}+2^{n_{M}} A_{U-M S B, \text { extra }}=2^{n} A_{u} 2^{n_{L}}+2^{n_{M}} A_{d} n_{M} \\
A_{D A C}=2^{n} A_{U}\left(2^{n_{L}}+\frac{A_{d}}{A_{u}} \frac{n-n_{L}}{2^{n_{L}}}\right)
\end{gathered}
$$

- If $A_{d} / A_{u}=8$ and $n=12$, the DAC area is minimum for $n_{L}=3$

Area of segmented DAC - III

On the left, plots of normalized DAC area for 12bit, 11-bit, and 10-bit segmented DACs, versus n_{L}

With a 3-step segmented current-steering DAC, the area becomes:

$$
A_{D A C}=2^{n} A_{U}\left(2^{n_{L}}+\frac{A_{d}}{2^{n} A_{u}}\left(n_{I} 2^{n_{I}}+n_{M} 2^{n_{M}}\right)\right)
$$

Switching of current sources

- Remember: when generating the control phases, never leave the connection of a unit current generator open, since the transistor would be pushed into the triode region, with a long recovering time

Switching phase generator

(a)

[^0]: If $\quad \varepsilon>1 / 2^{n-1}$ the step amplitude is negative, and the transfer function becomes non-monotonic

