Embedded Processors

AMBA Bus

Dalia Iurascu
Alejandro Vázquez Bofill

Lund University

What is an Embedded Processor?

"Embedded" into a device, it delivers **real-time** behavior in power sensitive applications.

Architecture as: Motorola 68000 (68K), Intel x86, AMD 29000(29K), Intel i960.

Contents

- Embedded Processors
 - Overview
 - Design features
 - AMBA Bus System
 - Why AMBA
 - AMBA AHB, APB Structure
 - AMBA Test Interface
 - Conclusions
 - References

Shipment of Embedded Processors

Figure 1: Marketing projections

J. Hennessy, "The Future of Systems Research"
Usage

- Consumer electronics
- Communication
- Automotive

Lorem, more of these, though they cost a lot less each.

Where are the embedded devices?

Why is this important?

- Give products programmability and flexibility
- Eliminate components
- Potential for future product upgrades (embedded software update)

Characteristics

- Application Specific Processors
- Static Structure
- Non-homogeneous
Number of embedded processor cores

![Comparison FPGA & Non-FPGA Designs]

Good Embedded Processors

- Performance
 - Latency
 - Bandwidth (throughput)
- Cost
 - Area
 - Complexity

μP/μC/DSP

- μC
 - single chip
 - memory, I/O ports
 - CISC processors
- μP
 - CPU
 - memory, I/O ports to be connected externally
 - RISC
- DSP
 - specialized microprocessor
 - designed for digital signal processing
 - real time
DSP-advantages

- Versatility
 - Reprogrammed for other applications

- Repeatability
 - Easily duplicated

- Simplicity

Nios II Embedded Processor

- Most used processor in the FPGA industry
- Five-Stage pipelined general-purpose RISC microprocessor
- Supports both 32-bit and 16-bit architectural variants
- Both utilize a 16-bit instruction format to reduce code footprint and instruction memory bandwidth

Nios II

- Configurable

- Easily combined with user logic and programmed into a PLD

- Advanced features, such as custom instructions

- Simultaneous multi-master Avalon bus

- Powerful processing solution

ARM-ISA

- Load-Store RISC Architecture

- 32 bit Architecture

- All instructions are predicated

- 16 Registers
 - R0-R14-general purpose register
 - R15-program counter

- 32 bit instructions
ARM Embedded Processors

- Architectural simplicity
- Small implementations
- Very low power consumption

Cortex M3

- High performance 32-bit CPU
- Develop high performance low-cost platforms
- RISC processor core
- Low latency 3-stage pipeline
- Optimal blend of 16/32-bit instructions

AMBA-ARM designed

- Advanced Microcontroller Bus Architecture
- On-Chip communication standard
- Signal protocol-connect multiple blocks in SOC
- High-performance bus standard
- High speed cache interfaces

- AMBA
 - AHB(Advanced High Performance)
 - ASB(Advanced System Bus)
 - APB(Advanced Peripheral Bus)

Why AMBA?

- Design for low power consumption
- Partitioning high and low-bandwidth devices
- Low costs
- Test access
 - Integrate optional on-chip test access methodology
 - Reuses the basic bus infrastructure
- Support of multiple development platforms
- Easier to port real time kernel software
ARM AMBA Bus

- Microprocessor
- On-chip RAM
- Off-chip RAM
- DMA Bus Master
- UART
- Timer
- APB
- Keypad
- PIO

Fig. 1. Typical AMBA-based Microcontroller

Dalia Iurascu, Alejandro Vazquez Bofill

AMBA Bus (cont.)

- High speed bus (ASB or AHB) for CPU
- Fast memory and DMA
- Bus for peripherals (APB)
 - Connected via a bridge to the high-speed bus

Dalia Iurascu, Alejandro Vazquez Bofill

AHB/APB

- **AHB**
 - High performance
 - Pipelined operation
 - Burst transfer
 - Multiple Bus Masters
 - Split transactions
 - Bus width: 8, 16, 32, 64, 128 bits

- **APB**
 - Low power
 - Latched address and control
 - Simple Interface
 - Suitable for many peripherals

Dalia Iurascu, Alejandro Vazquez Bofill

ASB

- High performance
- Pipelined operations
- Multiple bus masters
- Burst transfers
- Bus width: 8, 16, 32 bits

Dalia Iurascu, Alejandro Vazquez Bofill

Dalia Iurascu, Alejandro Vazquez Bofill
AMBA AHB Structure

- Initiate request to arbiter

Decoder
- Decode the address of each transfer
- Select the signals from the slave

Master:
- Initiate read and write operations
- Provide address and control information
- Only one bus master use actively the bus at one time

Slave:
- Respond to a read/write operation

Arbiter
- Ensures that only one bus master has access to the bus
- Each bus master can request the bus, the arbiter decides which has the highest priority and issues a grant signal accordingly

AMBA AHB Structure (cont.)

Decoder
- Decode the address of each transfer
- Select the signals from the slave

Master:
- Initiate read and write operations
- Provide address and control information
- Only one bus master use actively the bus at one time

Slave:
- Respond to a read/write operation

AMBA AHB Architecture
APB Components

AHB to APB Bridge

- Latching of all address, data and control signals
- Drive data for a write transfer
- Drive data for a read transfer

APB Components (cont.)

APB Slaves

- Un-Pipelined
- Zero power interface
- Write data valid for the whole access

ARM7 Processor

Figure 5. PID7T, the AMBA-based development card for the ARM7 processor family.

AMBA Test Interface

- Provides access to inputs/outputs of peripheral that are not directly connected to the bus

Dalia Iurascu, Alejandro Vazquez Bofill
Convert the external test vector into internal bus transfer.

Inputs for Test Interface

- **TCLK**
 - Test clock input signal
 - Must not glitch

- **TREQA**
 - Test bus request A
 - Request entry into the test mode

Inputs (cont.)

- **TREQB**
 - Test bus request B
 - Type of test vector in the following cycle

- **TACK**
 - Gives external indication that test bus has been granted

- **TBUS-bidirectional**
 - Apply address, control write vectors

Conclusions

- **Embedded processors**
 - Widely used and sold
 - Customized for a specific application
 - Typically have fewer resources compared with General purpose processors
Conclusions-AMBA

AMBA Bus

- Bus-excellent communication medium to connect several devices
- Shared communication-bottleneck in the system
- Technology independent
- Ensures that highly reusable peripheral can be migrated across a diverse range of IC processes

References

Thank you

Questions?