1 Introduction

2 Multiple dielectric slabs

3 Dielectric mirrors

4 Synthesis of frequency response, inverse scattering

5 Conclusions
Outline

1 Introduction

2 Multiple dielectric slabs

3 Dielectric mirrors

4 Synthesis of frequency response, inverse scattering

5 Conclusions
Key questions

▶ How can we analyze multilayer structures?
▶ What can we build with them?
▶ How can we construct a multilayer structure with a given frequency response?
▶ What does it “cost” to do good designs?
1 Introduction

2 Multiple dielectric slabs

3 Dielectric mirrors

4 Synthesis of frequency response, inverse scattering

5 Conclusions
Scattering from multilayer structure

\[
\begin{pmatrix}
E_{1+} \\
E_{1-}
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
\eta_a & 1 \\
1 & -\eta_a
\end{pmatrix} \mathbf{P}_1 \cdots \mathbf{P}_M \begin{pmatrix}
\frac{1}{\eta_b} & 0 \\
0 & -\frac{1}{\eta_b}
\end{pmatrix} \begin{pmatrix}
E'_{M+1,+} \\
0
\end{pmatrix}
\]

\[
\mathbf{P}_i = \begin{pmatrix}
\cos(k_i \ell_i) & j \eta_i \sin(k_i \ell_i) \\
-j \eta_i^{-1} \sin(k_i \ell_i) & \cos(k_i \ell_i)
\end{pmatrix}
\]
Scattering from multilayer structure

\[
\left(\begin{array}{c} E_{1+} \\ E_{1-} \end{array} \right) = P'_1 \cdots P'_M \frac{1}{\tau_{M+1}} \left(\begin{array}{cc} 1 & \rho_{M+1} \\ \rho_{M+1} & 1 \end{array} \right) \left(\begin{array}{c} E'_{M+1,+} \\ 0 \end{array} \right)
\]

\[
P'_i = \frac{1}{\tau_i} \left(\begin{array}{cc} e^{jk_i \ell_i} & \rho_i e^{-jk_i \ell_i} \\ \rho_i e^{jk_i \ell_i} & e^{-jk_i \ell_i} \end{array} \right)
\]

Daniel Sjöberg, Department of Electrical and Information Technology
Scattering parameters

The total transfer matrix relation is

\[
\begin{pmatrix}
E_{1+} \\
E_{1-}
\end{pmatrix} = \begin{pmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{pmatrix} \begin{pmatrix}
E_{M+1,+}' \\
0
\end{pmatrix}
\]

which implies

\[
T = \frac{E_{M+1,+}'}{E_{1+}} = \frac{1}{T_{11}}
\]

\[
\Gamma_1 = \frac{E_{1-}}{E_{1+}} = \frac{T_{21} E_{M+1,+}'}{E_{1+}} = \frac{T_{21}}{T_{11}}
\]

Thus, having computed the total transfer matrix, the reflection and transmission coefficients correspond to simple rearrangements.
Layer recursion for reflection

The reflection coefficient at interface i can be found by recursion

$$\frac{E_{i-}}{E_{i+}} = \Gamma_i = \frac{\rho_i + \Gamma_{i+1}e^{-2jk_i\ell_i}}{1 + \rho_i\Gamma_{i+1}e^{-2jk_i\ell_i}}, \quad \Gamma_{M+1} = \rho_{M+1}$$

and the impedance at interface i in the same way

$$\frac{E_i}{H_i} = Z = \frac{Z_{i+1} + j\eta_i \tan(k_i\ell_i)}{\eta_i + jZ_{i+1} \tan(k_i\ell_i)}, \quad Z_{M+1} = \eta_b$$

These are equivalent. Thus, the reflection properties can be found from a one-pass calculation, iterating from $M + 1$ to 1.
In general, to find also the transmission coefficient, the full cascading technique must be employed. However, in the important case of no losses energy conservation gives us the result

$$\frac{1 - |\Gamma|^2}{\eta_a} = \frac{|T|^2}{\eta_b}$$

Thus, for lossless structures the number $1 - |\Gamma|^2$ represents the transmittance.
From now on, we assume the medium is non-magnetic, that is,

\[k = \omega \sqrt{\epsilon \mu} = \frac{\omega}{c_0} \sqrt{\epsilon_r} = k_0 n \]

and

\[\eta = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{\mu_0}{\epsilon_0} \frac{1}{\sqrt{\epsilon_r}}} = \frac{\eta_0}{n} \]

Thus, a slab is characterized solely by its physical length \(\ell \) and its refractive index \(n = \sqrt{\epsilon_r} \).
% multidiel.m - reflection response of isotropic or birefringent multilayer structure

% na | n1 | n2 | ... | nM | nb
% left medium | L1 | L2 | ... | LM | right medium
% interface 1 2 3 M M+1

% Usage: [Gamma, Z] = multidiel(n, L, lambda, theta, pol)
% [Gamma, Z] = multidiel(n, L, lambda, theta) (equivalent to pol='te')
% [Gamma, Z] = multidiel(n, L, lambda) (equivalent to theta=0)

% n = isotropic 1x(M+2), uniaxial 2x(M+2), or biaxial 3x(M+2), matrix of refractive indices
% L = vector of optical lengths of layers, in units of lambda_0
% lambda = vector of free-space wavelengths at which to evaluate the reflection response
% theta = incidence angle from left medium (in degrees)
% pol = for 'tm' or 'te', parallel or perpendicular, p or s, polarizations

% Gamma = reflection response at interface-1 into left medium evaluated at lambda
% Z = transverse wave impedance at interface-1 in units of eta_a (left medium)

% notes: M is the number of layers (M >= 0)
% n = [na, n1, n2, ..., nM, nb] = 1x(M+2) row vector of isotropic indices
% [na1 n11 n12 ... n1M nb1] 3x(M+2) matrix of birefringent indices,
% [na2 n21 n22 ... n2M nb2] = if 2x(M+2), it is extended to 3x(M+2)
% [na3 n31 n32 ... n3M nb3] by repeating the top row

% optical lengths are in units of a reference free-space wavelength lambda_0:
% for i=1,2,...,M, L(i) = n(1,i) * l(i), for TM,
% L(i) = n(2,i) * l(i), for TE,
% TM and TE L(i) are the same in isotropic case. If M=0, use L=[].
% lambda is in units of lambda_0, that is, lambda/lambda_0 = f_0/f

% reflectance = |Gamma|^2, input impedance = Z = (1+Gamma)./(1-Gamma)
% delta(i) = 2*pi*[n(1,i) * l(i) * sqrt(1 - (Na*sin(theta))^2 ./ n(3,i).^2))]/lambda, for TM
% delta(i) = 2*pi*[n(2,i) * l(i) * sqrt(1 - (Na*sin(theta))^2 ./ n(2,i).^2))]/lambda, for TE
% if n(3,i)=n(3,i+1)=Na, then will get NaN's at theta=90 because of 0/0, (see also FRESNEL)
% it uses SQRTE, which is a modified version of SQRT appropriate for evanescent waves
% see also MULTIDIEL1, MULTIDIEL2

Daniel Sjöberg, Department of Electrical and Information Technology
Application: antireflection coating

\[n_a = 1 \quad E_i \quad E_r \quad n_a = 1 \quad E_i \quad E_r = 0 \quad n_a = 1 \quad E_i \quad E_r = 0 \]

\[n_b = 1.5 \]

\[n_1 = 1.22 \quad n_b = 1.5 \]

\[n_2 = 1.38 \quad n_3 = 2.45 \]

\[n_b = 1.5 \]

Antireflection Coatings on Glass

\[|\Gamma_1(\lambda)|^2 \quad (\text{percent}) \]

\[\lambda (\text{nm}) \]

Daniel Sjöberg, Department of Electrical and Information Technology
For a quarter wavelength slab, \(n_i \ell_i = \frac{\lambda_0}{4} \), we have

\[
Z_i = \eta_i \frac{Z_{i+1} + j\eta_i \tan(k_i \ell_i)}{\eta_i + jZ_{i+1} \tan(k_i \ell_i)} = \frac{\eta_i^2}{Z_{i+1}}
\]

and for a half wavelength slab, \(n_i \ell_i = \frac{\lambda_0}{2} \), we have

\[
Z_i = \eta_i \frac{Z_{i+1} + j\eta_i \tan(k_i \ell_i)}{\eta_i + jZ_{i+1} \tan(k_i \ell_i)} = Z_{i+1}
\]

Thus, quarter wavelength slabs inverts the impedance, whereas half wavelength slabs preserves impedance.
An impedance approach to antireflection

The goal is to transform the impedance η_b to η_a. Two possibilities:

First possibility (quarter-quarter):

$$\eta_a = \frac{\eta_1^2}{Z_2} = \frac{\eta_1^2}{\eta_2^2/\eta_b} = \eta_b \frac{\eta_1^2}{\eta_2^2} \quad \Rightarrow \quad \frac{n_a}{n_b} = \frac{n_1}{n_2}$$

Second possibility (quarter-half-quarter):

$$\eta_a = \frac{\eta_1^2}{Z_2} = \frac{\eta_1^2}{\eta_3^2/\eta_b} = \eta_b \frac{\eta_1^2}{\eta_3^2} \quad \Rightarrow \quad \frac{n_a}{n_b} = \frac{n_1}{n_3}$$
The design was made for the center wavelength $\lambda = 550\,\text{nm}$, the result for any wavelength is computed with `multidiel.m`:

Thicker structures are usually more broad band.
Outline

1 Introduction

2 Multiple dielectric slabs

3 Dielectric mirrors

4 Synthesis of frequency response, inverse scattering

5 Conclusions
Dielectric mirrors

Instead of anti-reflection, we can design a multilayered structure aimed at significant reflection.

Useful to avoid losses in metal structures. Typical design issues: thickness and bandwidth.
Design at center wavelength

Alternating quarter wavelength slabs of high \((n_H)\) and low \((n_L)\) refractive index (short hand notation \(AH(LH)^4G\)):

The impedance at interface 2 is

\[
Z_2 = \frac{\eta_L^2}{Z_3} = \frac{\eta_L^2}{\eta_H^2/Z_4} = \left(\frac{n_H}{n_L}\right)^2 Z_4 = \left(\frac{n_H}{n_L}\right)^4 Z_6 = \cdots = \left(\frac{n_H}{n_L}\right)^8 \eta_b
\]
Reflection

The impedance at interface 1 after N bilayers is

$$Z_1 = \frac{\eta_H^2}{Z_2} = \frac{\eta_0^2/n_H^2}{\left(\frac{n_H}{n_L}\right)^{2N} \eta_b}$$

which implies the reflection coefficient

$$\Gamma_1 = \frac{Z_1 - \eta_a}{Z_1 + \eta_a} = \ldots = \frac{1 - \left(\frac{n_H}{n_L}\right)^{2N} \frac{n_H^2}{n_a n_b}}{1 + \left(\frac{n_H}{n_L}\right)^{2N} \frac{n_H^2}{n_a n_b}} \to -1, \ N \to \infty$$

Thus, for many layers, we get high reflection. Without the final n_H layer, the reflection would have the limit $\Gamma \to +1$.

Daniel Sjöberg, Department of Electrical and Information Technology
Results for different number of layers

Computed using `multidiel.m` with the parameters $n_a = 1$, $n_b = 1.52$, $n_H = 2.32$, $n_L = 1.38$. Bandwidth is relatively insensitive to the number of layers.
Bandwidth for an infinite structure

Consider the limit case \(N \to \infty \). We look for waves propagating with the effective wave number \(K \), so that there should exist solutions (where \(\delta_L = k_L \ell_L \), \(\delta_H = k_H \ell_H \), and \(\ell = \ell_L + \ell_H \))

\[
\begin{pmatrix}
E_i \\
H_i
\end{pmatrix} = \begin{pmatrix}
\cos(\delta_L) & j\eta_L \sin(\delta_L) \\
-j\eta_L^{-1} \sin(\delta_L) & \cos(\delta_L)
\end{pmatrix}
\cdot \begin{pmatrix}
\cos(\delta_H) & j\eta_H \sin(\delta_H) \\
-j\eta_H^{-1} \sin(\delta_H) & \cos(\delta_H)
\end{pmatrix}
\begin{pmatrix}
E_{i+2} \\
H_{i+2}
\end{pmatrix}
\]

\[
= e^{jK\ell} \begin{pmatrix}
E_i \\
H_i
\end{pmatrix}
\]

This is an eigenvalue equation, which can be put in the form

\[
\cos(K\ell) = \frac{\cos(\delta_H + \delta_L) - \rho^2 \cos(\delta_H - \delta_L)}{1 - \rho^2}
\]

where \(\rho = \frac{n_H - n_L}{n_H + n_L} \). \(K \) is called the Bloch wavenumber.
With $\delta_H = \delta_L = \delta$, the equation is

$$\cos(K\ell) = \frac{\cos(2\delta) - \rho^2}{1 - \rho^2}$$

Propagating waves correspond to real K, which implies $|\cos(K\ell)| \leq 1$.

Inside the band gap, the waves are exponentially attenuated.
Bandgaps generalize to 3D structures
Short- and longpass reflectors

Short-hand notation for the dielectric mirror: \(A H(LH)^8 G \), where \(A \) denotes the air medium, \(H \) the high-index medium, \(L \) the low-index medium, and \(G \) is the glass. Two variations:

Shortpass: \(A(0.5L)H(LH)^8(0.5L)G \)

Longpass: \(A(0.5H)L(HL)^8(0.5H)G \)
Having designed a dielectric mirror, we can use it to construct a Fabry-Perot resonator, which is a narrow-band transmission filter.

Since a half wavelength slab preserves impedance, we can eliminate such slabs at the design frequency. By inserting a low-index material between two bilayer stacks, we obtain

\[(HL)^N L (HL)^N = (HL)^{N-1} HLLHL (HL)^{N-1}\]
\[\rightarrow (HL)^{N-1} HHL (HL)^{N-1}\]
\[\rightarrow (HL)^{N-1} L (HL)^{N-1} \rightarrow \cdots \rightarrow L\]

Adding another outer layer \(L\), the final structure \((HL)^N L (HL)^N L \rightarrow 2L\) allows perfect transmission.
Example of a Fabry-Perot resonator design

Computed using `multidiel.m` with parameters $n_a = n_b = 1.52$, $n_L = 1.4$, and $n_H = 2.1$.
Two FPRs

\[G | (HL)^{N_1} L (HL)^{N_1} | (HL)^{N_2} L (HL)^{N_2} | G \]

The bandwidth is controlled by the number of layers.
Note an extra L layer is added. The ripple is decreased by slight increase of middle FPR.
Four FPRs

\[G | (HL)^{N_1} L (HL)^{N_1} | (HL)^{N_2} L (HL)^{N_2} | (HL)^{N_3} L (HL)^{N_3} | (HL)^{N_4} L (HL)^{N_4} | G \]

No extra \(L \) layer needed. The ripple is decreased by slight increase of the middle FPRs.
Outline

1 Introduction

2 Multiple dielectric slabs

3 Dielectric mirrors

4 Synthesis of frequency response, inverse scattering

5 Conclusions
Realization of filters

Often, a design specification is given as requirements on the scattering parameters (reflection level A, bandwidth Δf):

$$|\Gamma(f)|^2$$

The design problem consists in finding the physical structure which realizes these requirements.
Equal travel-time multilayer structures

The two-way travel-time delay is the same in all layers

\[
\frac{2n_1 \ell_1}{c_0} = \frac{2n_2 \ell_2}{c_0} = \ldots = \frac{2n_M \ell_M}{c_0} = T_s
\]

and we define the \(z \)-domain variable (an alternative to \(\omega \))

\[
z = e^{j \omega T_s} = e^{2jk_i \ell_i}
\]
Using the $z = e^{2jk_i\ell_i}$ variable, the propagation

\[
\begin{pmatrix}
E_{i+} \\
E_{i-}
\end{pmatrix}
= \frac{1}{\tau_i}
\begin{pmatrix}
e^{jk_i\ell_i} & \rho_i e^{-jk_i\ell_i} \\
\rho_i e^{jk_i\ell_i} & e^{-jk_i\ell_i}
\end{pmatrix}
\begin{pmatrix}
E_{i+1,+} \\
E_{i+1,-}
\end{pmatrix}
\]

can be written

\[
\begin{pmatrix}
E_{i+} \\
E_{i-}
\end{pmatrix}
= \frac{z^{1/2}}{\tau_i}
\begin{pmatrix}
1 & \rho_i z^{-1} \\
\rho_i & z^{-1}
\end{pmatrix}
\begin{pmatrix}
E_{i+1,+} \\
E_{i+1,-}
\end{pmatrix}
\]
Cascading

The fields at the ith interface are then described by

$$
\begin{pmatrix}
E_{i+} \\
E_{i-}
\end{pmatrix}
= \frac{z^{(M+1-i)/2}}{\nu_i}
\begin{pmatrix}
1 & \rho_i z^{-1} \\
\rho_i & z^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & \rho_{i+1} z^{-1} \\
\rho_{i+1} & z^{-1}
\end{pmatrix}
\cdots
\begin{pmatrix}
1 & \rho_M z^{-1} \\
\rho_M & z^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & \rho_{M+1} \\
\rho_{M+1} & 1
\end{pmatrix}
\begin{pmatrix}
E'_{M+1,+}
\end{pmatrix}
$$

$$
= \frac{z^{(M+1-i)/2}}{\nu_i}
\begin{pmatrix}
A_i(z) & C_i(z) \\
B_i(z) & D_i(z)
\end{pmatrix}
\begin{pmatrix}
E'_{M+1,+}
\end{pmatrix}
$$

where $\nu_i = \tau_i \tau_{i+1} \cdots \tau_M \tau_{M+1}$. The matrix elements are polynomials of order $M + 1 - i$ in z^{-1}, meaning the reflection coefficient

$$
\Gamma_i(z) = \frac{E_{i-}}{E_{i+}} = \frac{B_i(z)}{A_i(z)}
$$

is then the quotient between two polynomials of order $M + 1 - i$.

Daniel Sjöberg, Department of Electrical and Information Technology
Recursion

Considering only factors relevant to reflection, the forward recursion (order-increasing in z^{-1}) is

$$
\begin{pmatrix}
A_i(z) \\
B_i(z)
\end{pmatrix} =
\begin{pmatrix}
1 & \rho_i z^{-1} \\
\rho_i & z^{-1}
\end{pmatrix}
\begin{pmatrix}
A_{i+1}(z) \\
B_{i+1}(z)
\end{pmatrix}
$$

and the backward recursion (order-decreasing in z^{-1}) is

$$
\begin{pmatrix}
A_{i+1}(z) \\
B_{i+1}(z)
\end{pmatrix} = \frac{1}{1 - \rho_i^2}
\begin{pmatrix}
1 & -\rho_i \\
-\rho_i z & z
\end{pmatrix}
\begin{pmatrix}
A_i(z) \\
B_i(z)
\end{pmatrix}
$$

The polynomials are

$$
B_i(z) = \sum_{m=0}^{M+1-i} b_i(m) z^{-m}, \quad A_i(z) = \sum_{m=0}^{M+1-i} a_i(m) z^{-m}
$$

with

$$
b_i(0) = \rho_i, \quad a_i(0) = 1,
\quad b_i(M + 1 - i) = \rho_{M+1}, \quad a_i(M + 1 - i) = \rho_{M+1} \rho_i
$$
A closer look at the recursion

Writing the polynomial coefficients as a vector

\[
\mathbf{a}_i = \begin{pmatrix}
a_i(0) \\
a_i(1) \\
\vdots \\
a_i(M + 1 - i)
\end{pmatrix} \quad \mathbf{b}_i = \begin{pmatrix}
b_i(0) \\
b_i(1) \\
\vdots \\
b_i(M + 1 - i)
\end{pmatrix}
\]

the forward and backward recursion can be written

\[
\mathbf{a}_i = \begin{pmatrix}
\mathbf{a}_{i+1} \\
0
\end{pmatrix} + \rho_i \begin{pmatrix}
0 \\
\mathbf{b}_{i+1}
\end{pmatrix} \quad \begin{pmatrix}
\mathbf{a}_{i+1} \\
0
\end{pmatrix} = \frac{\mathbf{a}_i - \rho_i \mathbf{b}_i}{1 - \rho_i^2}
\]

\[
\mathbf{b}_i = \rho_i \begin{pmatrix}
\mathbf{a}_{i+1} \\
0
\end{pmatrix} + \begin{pmatrix}
0 \\
\mathbf{b}_{i+1}
\end{pmatrix} \quad \begin{pmatrix}
0 \\
\mathbf{b}_{i+1}
\end{pmatrix} = \frac{-\rho_i \mathbf{a}_i + \mathbf{b}_i}{1 - \rho_i^2}
\]
Filter realization

The procedure for designing a structure which realizes the reflection coefficient $\Gamma(f)$ can be summarized as:

1. Change variables to $z = e^{j\omega T_s}$, where $T_s = \frac{2k_i}{c_0}$ determines the optical thickness of the layers (center wavelength).
2. Approximate $\Gamma(z)$ with a polynomial ratio $\frac{B(z)}{A(z)}$, where the order of the polynomials determines the number of layers.
3. Use backwards recursion to find $A_i(z)$ and $B_i(z)$. The coefficients give reflection coefficients $\rho_1, \rho_2, \ldots, \rho_{M+1}$.
4. Calculate refractive indices $n_1, n_2, \ldots, n_{M+1}$ from the reflection coefficients.

The polynomial $A(z)$ must have all its zeros inside the unit circle in the z-plane (minimum-phase polynomial in z^{-1}, corresponding to stability and causality).
The procedure for designing a structure which realizes the reflection coefficient $\Gamma(f)$ can be summarized as:

1. Change variables to $z = e^{j\omega T_s}$, where $T_s = \frac{2k_i \ell_i}{c_0}$ determines the optical thickness of the layers (center wavelength).
Filter realization

The procedure for designing a structure which realizes the reflection coefficient $\Gamma(f)$ can be summarized as:

1. Change variables to $z = e^{j\omega T_s}$, where $T_s = \frac{2k_i\ell_i}{c_0}$ determines the optical thickness of the layers (center wavelength).

2. Approximate $\Gamma(z)$ with a polynomial ratio $\frac{B(z)}{A(z)}$, where the order of the polynomials determines the number of layers.
Filter realization

The procedure for designing a structure which realizes the reflection coefficient $\Gamma(f)$ can be summarized as:

1. Change variables to $z = e^{j\omega T_s}$, where $T_s = \frac{2k_i \ell_i}{c_0}$ determines the optical thickness of the layers (center wavelength).

2. Approximate $\Gamma(z)$ with a polynomial ratio $\frac{B(z)}{A(z)}$, where the order of the polynomials determines the number of layers.

3. Use backwards recursion to find $A_i(z)$ and $B_i(z)$. The coefficients give reflection coefficients $\rho_1, \rho_2, \ldots, \rho_{M+1}$.
The procedure for designing a structure which realizes the reflection coefficient $\Gamma(f)$ can be summarized as:

1. Change variables to $z = e^{j\omega T_s}$, where $T_s = \frac{2k_i\ell_i}{c_0}$ determines the optical thickness of the layers (center wavelength).

2. Approximate $\Gamma(z)$ with a polynomial ratio $\frac{B(z)}{A(z)}$, where the order of the polynomials determines the number of layers.

3. Use backwards recursion to find $A_i(z)$ and $B_i(z)$. The coefficients give reflection coefficients $\rho_1, \rho_2, \ldots, \rho_{M+1}$.

4. Calculate refractive indices $n_1, n_2, \ldots, n_{M+1}$ from the reflection coefficients.
The procedure for designing a structure which realizes the reflection coefficient $\Gamma(f)$ can be summarized as:

1. Change variables to $z = e^{j\omega T_s}$, where $T_s = \frac{2k_i \ell_i}{c_0}$ determines the optical thickness of the layers (center wavelength).

2. Approximate $\Gamma(z)$ with a polynomial ratio $\frac{B(z)}{A(z)}$, where the order of the polynomials determines the number of layers.

3. Use backwards recursion to find $A_i(z)$ and $B_i(z)$. The coefficients give reflection coefficients $\rho_1, \rho_2, \ldots, \rho_{M+1}$.

4. Calculate refractive indices $n_1, n_2, \ldots, n_{M+1}$ from the reflection coefficients.

The polynomial $A(z)$ must have all its zeros inside the unit circle in the z-plane (minimum-phase polynomial in z^{-1}, corresponding to stability and causality).

Daniel Sjöberg, Department of Electrical and Information Technology
Example: 6.6.1 in Orfanidis

Determine the number of layers M, the reflection coefficients at the $M + 1$ interfaces, and the refractive indices of the $M + 2$ media for a multilayer structure whose overall reflection response is given by:

$$\Gamma(z) = \frac{B(z)}{A(z)} = \frac{-0.1 - 0.188z^{-1} - 0.35z^{-2} + 0.5z^{-3}}{1 - 0.1z^{-1} - 0.064z^{-2} - 0.05z^{-3}}$$
Example: 6.6.1 in Orfanidis, solution

Solution: From the degree of the polynomials, the number of layers is $M = 3$. The starting polynomials in the backward recursion (6.6.50) are:

$$a_1 = a = \begin{bmatrix} 1.000 \\ -0.100 \\ -0.064 \\ -0.050 \end{bmatrix}, \quad b_1 = b = \begin{bmatrix} -0.100 \\ -0.188 \\ -0.350 \\ 0.500 \end{bmatrix}$$

From the first and last coefficients of b_1, we find $\rho_1 = -0.1$ and $\rho_4 = 0.5$. Setting $i = 1$, the first step of the recursion gives:

$$\begin{bmatrix} a_2 \\ 0 \end{bmatrix} = \frac{a_1 - \rho_1 b_1}{1 - \rho_1^2} = \begin{bmatrix} 1.000 \\ -0.120 \\ -0.100 \\ 0.000 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ b_2 \end{bmatrix} = \frac{-\rho_1 a_1 + b_1}{1 - \rho_1^2} = \begin{bmatrix} 0.000 \\ -0.200 \\ -0.360 \\ 0.500 \end{bmatrix}$$

Thus,

$$a_2 = \begin{bmatrix} 1.000 \\ -0.120 \\ -0.100 \end{bmatrix}, \quad b_2 = \begin{bmatrix} -0.200 \\ -0.360 \\ 0.500 \end{bmatrix}$$
The first coefficient of b_2 is $\rho_2 = -0.2$ and the next step of the recursion gives:

$$\begin{bmatrix} a_3 \\ 0 \end{bmatrix} = \frac{a_2 - \rho_2 b_2}{1 - \rho_2^2} = \begin{bmatrix} 1.0 \\ -0.2 \\ 0.0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ b_3 \end{bmatrix} = \frac{-\rho_2 a_2 + b_2}{1 - \rho_2^2} = \begin{bmatrix} 0.0 \\ -0.4 \\ 0.5 \end{bmatrix}$$

Thus,

$$a_3 = \begin{bmatrix} 1.0 \\ -0.2 \end{bmatrix}, \quad b_3 = \begin{bmatrix} -0.4 \\ 0.5 \end{bmatrix} \Rightarrow \rho_3 = -0.4$$

The last step of the recursion for $i = 3$ is not necessary because we have already determined $\rho_4 = 0.5$. Thus, the four reflection coefficients are:

$$[\rho_1, \rho_2, \rho_3, \rho_4] = [-0.1, -0.2, -0.4, 0.5]$$

The corresponding refractive indices can be obtained by solving Eq. (6.1.1), that is, $n_i = n_{i-1}(1 - \rho_i) / (1 + \rho_i)$. Starting with $i = 1$ and $n_0 = n_a = 1$, we obtain:

$$[n_a, n_1, n_2, n_3, n_b] = [1, 1.22, 1.83, 4.28, 1.43]$$

The same results can be obtained by working with the polynomial version of the recursion, Eq. (6.6.46).

\square
Results

In the green curve, one of the refractive indices have been slightly changed from the computed values.

The whole recursion procedure can be done in matlab by

```matlab
a = [1, -0.1, -0.064, -0.05];
b = [-0.1, -0.188, -0.35, 0.5];
[r,A,B] = bkwrec(a,b);
n = r2n(r);
```
Applications

Impedance matching

Acoustic matching

Oil prospecting

Bragg grating
The design method assumes

\[|\Gamma(f)|^2 = \frac{e_1^2 T_M^2(x)}{1 + e_1^2 T_M^2(x)} \]

\[x = x_0 \cos \delta = x_0 \cos \left(\frac{\pi f}{2f_0} \right) \]

where \(T_M(x) = \cos(M \arccos(x)) \), and the design parameters are \(e_1 \) (attenuation), and \(x_0 \) (bandwidth). \(M \) must be “large enough”.
The Chebyshev design is well established, and is coded in

\[
\begin{align*}
[n,a,b] &= \text{chebtr}(na,nb,A,DF); \quad \% \text{Chebyshev multilayer design} \\
[n,a,b,A] &= \text{chebtr2}(na,nb,M,DF); \quad \% \text{specify order and bandwidth} \\
[n,a,b,DF] &= \text{chebtr3}(na,nb,M,A); \quad \% \text{specify order and attenuation}
\end{align*}
\]

Note that only two of the design parameters (attenuation, bandwidth, order) are set at once. The remaining parameter is a consequence of the others.
Outline

1 Introduction
2 Multiple dielectric slabs
3 Dielectric mirrors
4 Synthesis of frequency response, inverse scattering
5 Conclusions
Conclusions

- Multilayer structures are easily analyzed by cascading techniques.
- Typical designs are based on quarter wavelength and half wavelength slabs.
- A stack of high/low index slabs can form a dielectric mirror.
- An arbitrary frequency response can be synthesized in a structured design process.
- The order of the response function typically corresponds to the number of quarter wavelength layers.
- High bandwidth and high attenuation requires many layers.