5G rollout

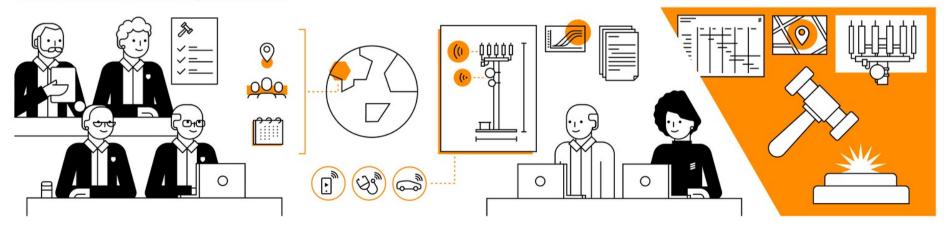
Gemma Vall Llosera, PhD Researcher at LTH Elektro- och informationsteknik Principal Q engineer at Ericsson

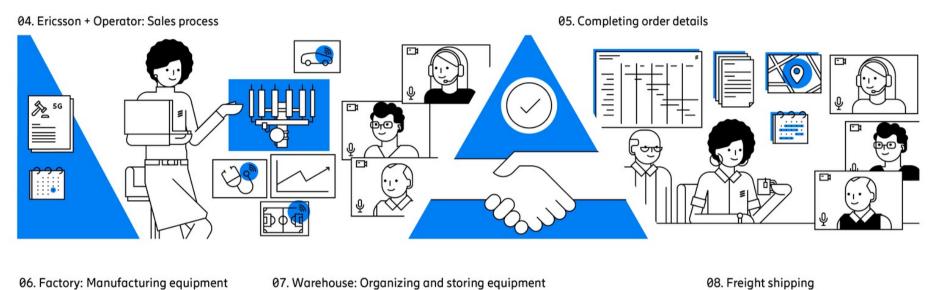
Agenda

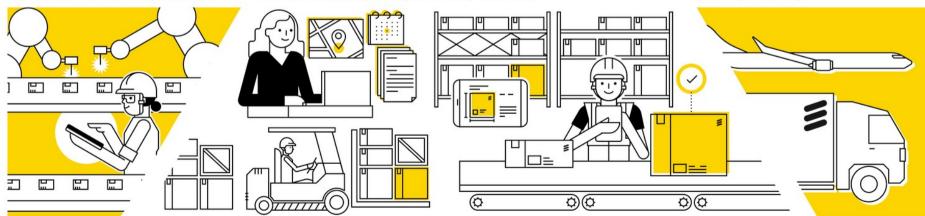
- 5G end-to-end storyboard
- 5G rollout process
- a practical example of a data science use case

5G end-to-end storyboard

Gemma Vall Llosera

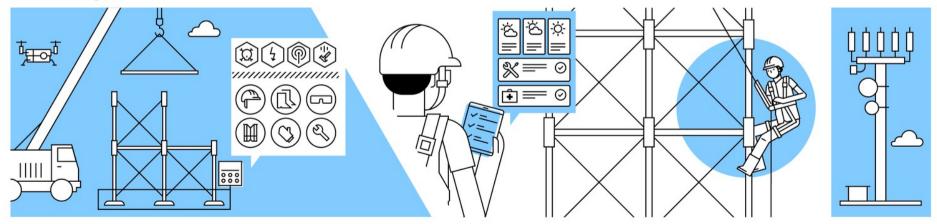

Automation & AI

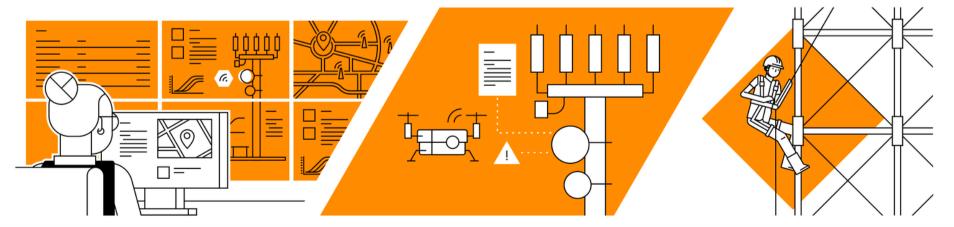

3

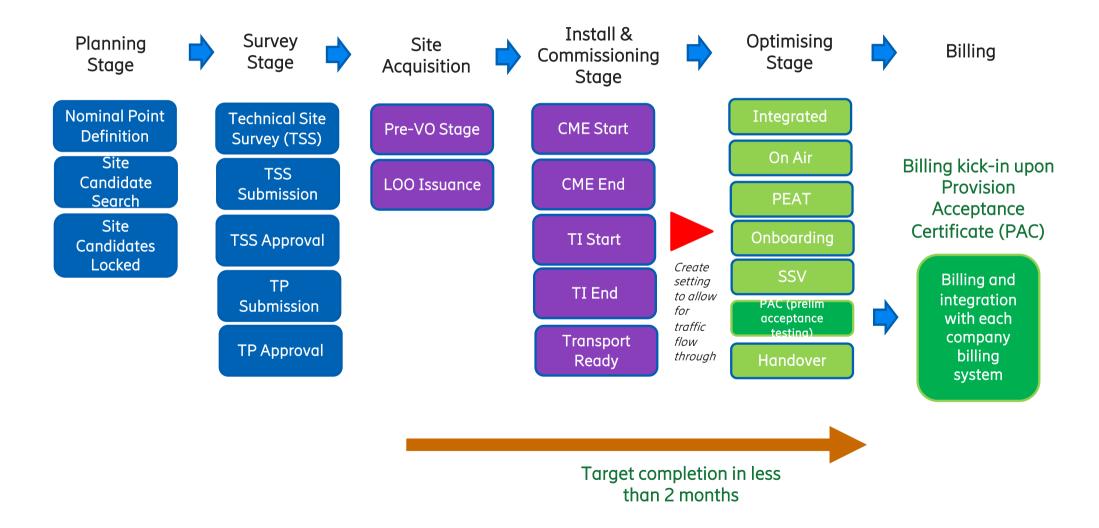


02. Government & Telecoms: 5G Spectrum auction

03. Spectrum licenses awarded to telecom operators




12. Constructing site


15. Remote support

16. Field maintenance

5G rollout

5G rollout milestones

1

Planning stage

Nominal Point Definition Site Candidate Search Site Candidates Locked

- After network dimensioning comes the planning stage
- Planning stage: 3 lat/long are chosen as candidates to deploy the sites
- Nominal point definition: network dimensioning based on throughput, latency, availability, etc
- Site candidate search: based on the output of the network dimensioning, candidate locations need to be explored
- Site candidates locked: after exploration, sites are locked
- Typical duration: 7 days

Survey stage

Technical Site Survey (TSS)
TSS Submission
TSS Approval
TP Submission
TP Approval

- Survey stage: from visiting the site to approval of the technical plan by the customer
- Technical site survey (TSS): physical visit to the sites to see floorspace availability, power availability, previous installation present, building or mountain, distance to closest road, paved road? fibre optical present? can we dig? Out of the 3 candidates, which one is available?
- TSS submission: submission of the report to the customer- this is my plan for the rollout
- TSS Approval: Customer approves the report, usually on 3 sites
- Technical plan (TP) submission: at ths stage only one site is chosen
- TP Approval: approval of the plan by the customer
- Typical duration: 26 days

Site acquisition

Pre-VO Stage LOO Issuance

- During the site acquisition we need to do research, evaluate, and negotiate leases for locations that can host telecommunications equipment such as wireless transmission towers. This is done during the pre-visual object stage.
- Letter-of-offer (LOO) Issuance: letter of offer to the land owner /landlord of the building with the details of the contract

Once the site is bought the install & commissioning stage starts

Install and comissioning stage

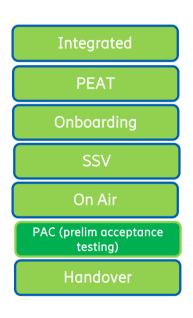
CME Start

CME End

TI Start

TI End

Transport


Ready

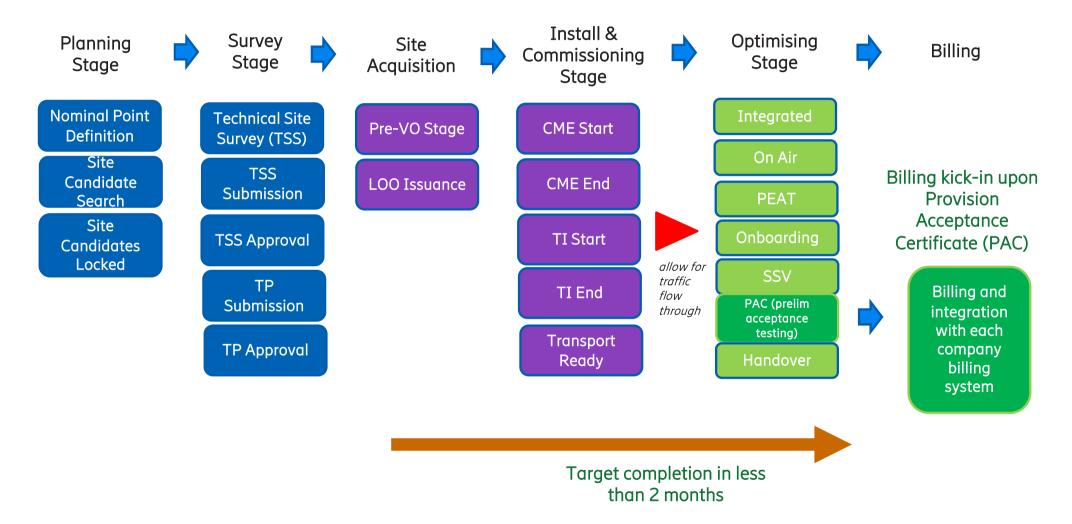
- This stage goes from the start of the CME work until the transport is ready.
- Civil, mechanical and electrical work (CME) includes civil works on ground and on air, ex. structural stengthening, 3-phaese power, clear any debris, ground need to be compacted with gravel,

2

- Technical installation (TI) includes the installation of power and building up the radios digital unit, remote units.
- Transport ready: when the transport network is ready. by transport we mean optical fibre and/or microwave.
- typical duration CME start to CME acceptance between 37 or 67 days depending on if it's collocated or new site.
- typical duration from TI end to transport ready is 8 days for sites with fibre backhaul, 12 days for sites with microwave backhaul.
- note that if fibre is not present and it needs to be deployed, this work already starts after the TSS (technical site survery) and it takes around 90 days.

Optimisation stage

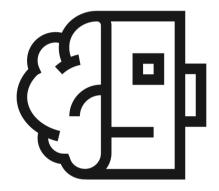
- the optimisation stage starts with the integration finished and concludes with the handover to the customer
- Integration: sites are installed, core network is connected, i.e. fibre and MW working
- Prelimindary equipment acceptance test (PEAT):
- Onboarding of the actual users
- Single site verification (SSV): verification step
- Provision Acceptance Certificate (PAC): preliminary acceptance testing
- On-air: in this phase a few phone calls are made
- Handover: fully accepted by the customer
- Typical duration: this varies a little bit as in here we have several different workflows. It could be between 52 and 79 days


Billing

Billing kick-in upon Provision Acceptance Certificate (PAC)

> Billing and integration with each company billing system

• In this stage the billing gets integrated

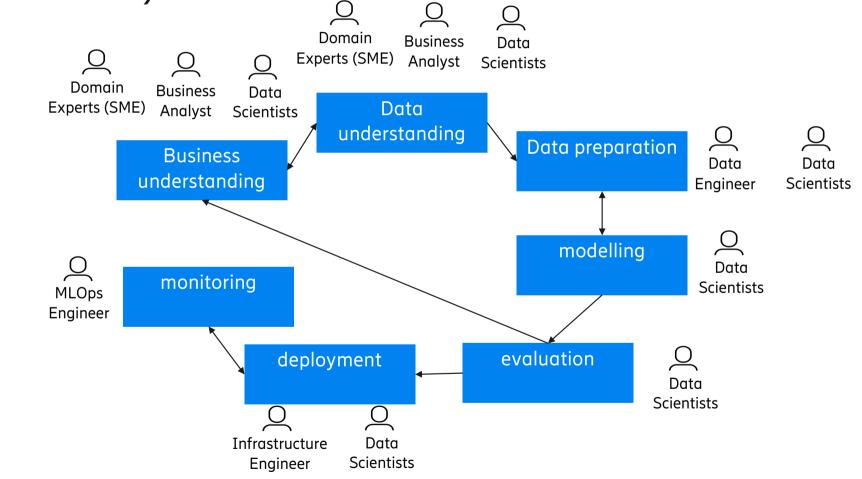

5G rollout milestones

A practical example of a data science use case

5G rollout milestone prediction

- We have seen a 5G rollout goes through many milestones
- What if given the date when the TSS is approved, site characteristics, radios to be deployed, etc we can predict when the site will be installed? integrated and on-air?
- what if we could classify if the site will be finished in more or less than 120 days?
- this would allow us to send the right people to the right site depending on prioritisation of sites

Data science holy grail


• Ask the relevant question and using the domain knowledge to capture the right data

- Do NOT collect too much data
- You need to be a good filter

Cross-industry standard process for data mining (CRISP-DM)

Use case matrix

Purpose Goal of the project	Value Created Key benefits of the projects	Initial Hypothesis What do we hope to find
Data What input data is available? What is he data quality?	Activities Steps of the project	Possible risks Issues that can impact the project

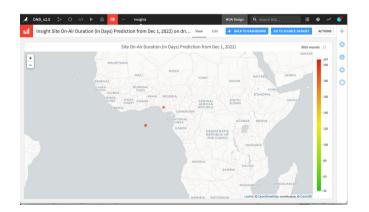
In order to fill in the use case matrix

- Business understanding
- meet with stakeholders and subject matter experts
- discuss the pain points
- translate the use case into a data science use case
- define who will use the results and how they need to be visualised
- define success criteria
- produce a project plan, budget and team that will deliver the use case

Use case matrix

Purpose Goal of the project	Value Created Key benefits of the projects	Initial Hypothesis What do we hope to find
Develop prediction and classification models for installation, integration and on-air milestones	 Better resource allocation better customer acceptance less delays automated reporting 	 Visualise site progress against plan Forecast actual plan to prevent delays Stie reprioritization in case of forecasted delay
Data What input data is available? What is he data quality?	Activities Steps of the project	Possible risks Issues that can impact the project
6000 rows 1700 cols with data from planning, survey, site acq, install & comissioning, optimising stages	Planning, data ingestion, transformation, modelling, deployment, test and validate, publish data on dashboards	Geographical admin data is not available for polygon visuals Data collected is not representative of geography to predict

data ingestion


- Data resides in a specific country and can't leave the country
- Data is stored in a database without API
- Is this tabular data?
- is this parket data?
- is the network port to that database open?

	Search and import			
🗄 Files	📢 Hadoop	SQL	Cloud Storages	all NoSQL
Upload your files Server's Filesystem	HDFS Hive	Snowflake Teradata Amazon Redshift Greenplum Azure Synapse Google AlloyDB Google BigQuery Athena PostgreSQL Vertica MySQL SAP Hana M S SQL Server IBM Netezza Oracle Databricks Other SQL	Amazon S3 FTP Azure Blob Storage SFTP Google Cloud Storage SCP HTTP HTTP (with cache)	MongoDB Cassandra ElasticSearch
Social Twitter	DSS Files in folder Managed dataset Folder Evaluation store Metrics Internal stats Editable Experiments	Import existing Import from data collection Import dataset from another project Import dataset dable Import from connection Import from feature store Import DSS item from another project		

Data and Data Quality

- Data Source
 - DPM Azure Data blob
- Data Quality
 - Timeliness : High
 - Validity: High
 - Consistency: Low
 - Integrity: Low
 - Completeness: Medium
 - Volume of data: Medium
 - (15k rows and 1737 columns, but many empty)

COLUMN COUNT	FILE COUNT	SIZE	RECORD COUNT
1737	1	289.66 MB	15 113
2023-09-21 12:37	2023-09-21 12:37	2023-09-21 12:37	2023-09-21 12:37

Data Quality- volume of data

- Integration data analysis
 - Start with 14059 rows
 - 7628 rows after removing Site_Status = inactive
 - 6893 rows after removing empty values in TSS_Actual_Date
 - Then we split 3824 rows for unseen Integration_duration and 3184 rows for seen (we could score 3824 sites)
 - In reality we score 331 rows (8.33%) because the num of rows in Installation duration = num of rows in Installation_Actual_end and it's only 8.33% full

- we could score more sites going back to just TSS_approval_actual
- Let's remove almost empty features: Transmission_req_actual, Fiber_acceptance_actual, RAN_CME_actual_end, installation_actual_start, installation_actual_end and installation_duration
- we still score 331 rows
- because:
- 1. Fibre _ready_last_point_actual has 554/1662 rows with invalid data 2000-01-01
- 2. CME_Actual_end has 886 rows
- 3. CME_actual_start has 1086 rows of data
- 4. TP_approval_actual has 3266 rows of data

The scoring (prediction) only works for overlapping rows (all columns have a value in the same row)

1,2,3,4 only overlap in 331 rows...

• Integration duration is calculated as = TSS_Actual_Data – Integration_Actual

data preparation

- Remove useless columns
- Find and replace : 30m, 30M, 30, thirty meters, 30
- create geopoints
- compute time difference
- Remove rows with empty values
- Filter rows where site is not active
- Replace "" by 0
- Fill empty cells with ...
- Replace 2 values in building height
- parse data

•			
	٠	•	•

© © Ŭ ·									
Column single multiple pattern all	sing_Caging	Flood_site	Flood_propose	Proposed_BoQ_per_site	Configured_Power	Enclosure_Type	Site_Configuration	Site_Status	1
Site_Owner		boolean	string	string	string	bigint	string	string	st
Output column (empty for in-place)		Boolean	Boolean	Text	Text	Integer	Text	Text	Na
				RP 6651		6140		Active	15
Replacements				RP 6651		6140		Active	15
∷ TBCX → TBC	b l			RP 6651		6140		Active	15
∷ JUSTCLICK → NFP-JUSTC 1	7			RP 6651		6140		Active	15
:: OCK → NFP-OCK 1				RP 6651		6140		Active	15
	y			RP 6651		6140		Active	15
∷ TELEFLOW → NFP-TELEF 10	Ĵ			RP 6651		6140		Active	15
+ ADD REPLACEMENT				RP 6651 RP 6	651	6140		Active	15
🖉 Raw text edit				RP 6651		6140		Active	12
Match mode				RP 6651		6140		Active	12
Complete value -				RP 6651		6140		Active	12
				RP 6651		6140		Active	12
Normalization mode				RP 6651		6140		Active	12
Evart -				RP 6651		6140		Active	12
► RUN				RP 6651		6140		Active	12
Engine: DSS 🍄	-			DD 0054		~			

Modelling

- Iterate with different input features
- Iterate with different algorithms
- hyperparameter tuning
- model evaluation and comparison (metrics, exectution time...)

Algorithm

Algorithm details

Algorithm	LightGBM
Booster	gbdt
Actual number of trees	54
Maximum number of leaves	31
Learning rate	0.1
Alpha (L1 regularization)	0
Lambda (L2 regularization)	0
Minimal gain to perform a split on a leaf	0
Min sum of instance weight in a child	0.001
Subsample ratio of the training instance	1
Columns subsample ratio for trees	0.7

Training data

Rows (before preprocessing)	3274	Rows (after preprocessing)	3274
Columns (before preprocessing)	69	Columns (after preprocessing)	966
Matrix type	dense		
Estimated memory usage	24.13 MB		

Deployment

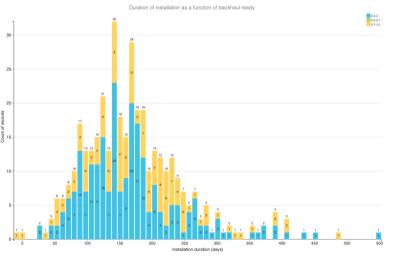
- Once model is good enough decide what to do next:
- deploy the model
- collect more data and improve it
- revise business question again

LightGBM (installation_reconfig) 🥒

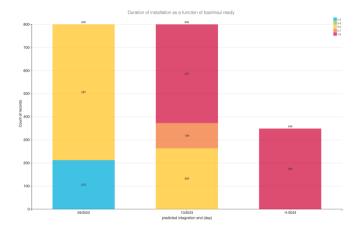
4

Model IDA-5G_ROLLOUT-SPBuFYWf-CyjqKlnG-s2-pp1-mModel typeRegressionTargetInstallation_durationBackendPython (in memory)AlgorithmLightgbm regressionTrained on2023/09/21 12:53Columns69Train set rows797Calibration methodNo calibrationCode EnvDSS builtin env	Model	
TargetInstallation_durationBackendPython (in memory)AlgorithmLightgbm regressionTrained on2023/09/21 12:53Columns69Train set rows3274Test set rows797Calibration methodNo calibration	Model ID	A-5G_ROLLOUT-SPBuFYWf-CyjqKlnG-s2-pp1-m1
Backend Python (in memory) Algorithm Lightgbm regression Trained on 2023/09/21 12:53 Columns 69 Train set rows 3274 Test set rows 797 Calibration method No calibration	Model type	Regression
AlgorithmLightgbm regressionTrained on2023/09/21 12:53Columns69Train set rows3274Test set rows797Calibration methodNo calibration	Target	Installation_duration
Trained on 2023/09/21 12:53 Columns 69 Train set rows 3274 Test set rows 797 Calibration method No calibration	Backend	Python (in memory)
Columns 69 Train set rows 3274 Test set rows 797 Calibration method No calibration	Algorithm	Lightgbm regression
Train set rows 3274 Test set rows 797 Calibration method No calibration	Trained on	2023/09/21 12:53
Test set rows 797 Calibration method No calibration	Columns	69
Calibration method No calibration	Train set rows	3274
	Test set rows	797
Code Env DSS builtin env	Calibration method	No calibration
	Code Env	DSS builtin env
Python version 3.7.13	Python version	3.7.13

MLOps


- Monitor the performance of the model because new data will be added to the dataset
- Retrain with new data

ONAIR_RECONFIG Started Today at 13:31 , ended Today at 1 0.787 0.786 0.786 0.786 0.787 0.786 0.788 0.786	3:32 1 model 47 / 69 features ▼ 	● LightGBM (onair_reconfig)
0s 5s 10s	15s 20s 25s 30 ✓ Done 35 minutes ago (2023-09-2113:32:16) ᠍ Diagnostics	
Boosting typegbdtNb. estimators46Nb. leaves31Learning rate0.1Hyperparameter search size8	Most important features Integration_duration Celcom_onboarding_duration TM-onboarding_duration Installation_duration SSV_Approved_Actual	Train set 2509 rows Test set 630 rows Train time about 56 seconds


Business insights

Business insights

A function for prioritising the sites/rows.

- if row["Colocate"] == "Yes" and (row["CME_Plan_End_Date"] <= row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 1:
 #If it is co-located, CME is expected to be done and the backhaul is done: Priority 1
 return 1</pre>
- elif row["Colocate"] == "No" and (row["CME_Plan_End_Date"] <= row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 1:
 #If it is not co-located, CME is expected to be done and the backhaul is done: Priority 2
 return 2</pre>
- elif row["Colocate"] == "Yes" and (row["CME_Plan_End_Date"] > row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 1:
 #If it is co-located, CME is not expected to be done and the backhaul is done: Priority 3
 return 3
- elif row["Colocate"] == "Yes" and (row["CME_Plan_End_Date"] <= row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 0:
 #If it is co-located, CME is expected to be done and the backhaul is required: Priority 4
 return 4</pre>
- elif row["Colocate"] == "No" and (row["CME_Plan_End_Date"] > row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 1:
 #If it is not co-located, CME is not expected to be done and the backhaul is done: Priority 5
 return 5
- elif row["Colocate"] == "Yes" and (row["CME_Plan_End_Date"] > row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 0:
 #If it is co-located, CME is not expected to be done and the backhaul is required: Priority 6
 return 6
- elif row["Colocate"] == "No" and (row["CME_Plan_End_Date"] <= row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 0:
 #If it is not co-located, CME is expected to be done and the backhaul is required: Priority 7
 return 7</pre>
- elif row["Colocate"] == "No" and (row["CME_Plan_End_Date"] > row['Predicted_integration_end_' + str(monthly_limit)]) and row["Backhaul_ready"] == 0:
 #If it is not co-located, CME is not expected to be done and the backhaul is required: Priority 8
 return 8

else:

#Something was input incorrectly.

- #raise Exception("A value was input incorrectly")
- if row["Colocate"] == "Yes" and row["Backhaul_ready"] == 1:
 - #If it is co-located, CME is not expected to be done and the backhaul is done: Priority 3 return 3
- elif row["Colocate"] == "No" and row["Backhaul ready"] == 1:
- #If it is not co-located, CME is not expected to be done and the backhaul is done: Priority 5
- elif row["Colocate"] == "Yes" and row["Backhaul_ready"] == 0: #If it is co-located, CME is not expected to be done and the backhaul is required: Priority 6

return 6

- elif row["Colocate"] == "No" and row["Backhaul ready"] == 0:
 - #If it is not co-located, CME is not expected to be done and the backhaul is required: Priority 8 return 8

Summary

- 5G does not stop at the air interface
- besides RAN or core network technology other teams with other skillsets are necessary to enable a 5G communication link
- The rollout team is one of them (besides sourcing, product development, sales, finance...)
- Machine learning can help , f. ex. in prediting the sites that are at risk of not being finished on time, thus incurring a penalty
- Machine learning can help reproritise the workforce for better use of them
- Domain knowledge and dashboarding are two of the most important assets in order to deliver a successful ML use case

