

How to read 3GPP docs: example

Document 3GPP TS $\mathbf{3 8 . 2 1 1}$ version 17.4.0 Release 17

4.1 General

Throughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed in time units $T_{\mathrm{c}}=1 /\left(\Delta f_{\max } \cdot N_{\mathrm{f}}\right)$ where $\Delta f_{\max }=480 \cdot 10^{3} \mathrm{~Hz}$ and $N_{\mathrm{f}}=4096$. The constant $\kappa=T_{\mathrm{s}} / T_{\mathrm{c}}=64$ where $T_{\mathrm{s}}=1 /\left(\Delta f_{\text {ref }} \cdot N_{\mathrm{f}, \text { ref }}\right), \Delta f_{\text {ref }}=15 \cdot 10^{3} \mathrm{~Hz}$ and $N_{\mathrm{f}, \text { ref }}=2048$. page 11

$$
\begin{aligned}
& N_{\mathrm{u}}^{\mu}=2048 \kappa \cdot 2^{-\mu} \\
& N_{\mathrm{CP}, l}^{\mu}= \begin{cases}512 \kappa \cdot 2^{-\mu} & \text { extended cyclic prefix } \\
144 \kappa \cdot 2^{-\mu}+16 \kappa & \text { normal cyclic prefix, } l=0 \text { or } l=7 \cdot 2^{\mu} \\
144 \kappa \cdot 2^{-\mu} & \text { normal cyclic prefix, } l \neq 0 \text { and } l \neq 7 \cdot 2^{\mu}\end{cases} \\
& T_{\mathrm{symb}, l}^{\mu}=\left(N_{\mathrm{u}}^{\mu}+N_{\mathrm{CP}, l}^{\mu}\right) T_{\mathrm{c}}
\end{aligned}
$$

\% max reference parameters
df max = 480*10^3;
\% Hz
Nfft = 4096;
Tc = 1/(df_max * Nfft);
\% LTE reference parameters
df = 15*10^3;
\% Hz
Nfft_r = 2048;
Ts = 1/(df*Nfft_r);
$\mathrm{K}=\mathrm{Ts} / \mathrm{Tc}$; \quad K parameter
mu = 4; \% Numerology: it's the 5G BS numerology
disp(['Your numerology mu = ', num2str(mu)])
disp(' ')
Nsym_u = 2048 * K * 2^(-mu); \quad O OFDM symbol useful part
Ns_LCP $=144 * \mathrm{~K} * 2^{\wedge}(-\mathrm{mu})+16 * \mathrm{~K}$;
\% Long cyclic prefix
Ns_RCP = $144 * \mathrm{~K} *$ 2^(-mu) $^{\wedge}$
\% Regular cyclic prefix
\% Symbol duration
TsymbL = (Nsym_u + Ns_LCP) * Tc; \quad 。 Duration of an OFDM symbol with LCP
TsymbR $=$ (Nsym_u + Ns_LCP) $*$ Tc; \quad \% Duration of an OFDM symbol with RCP
T_LCP = Ns_LCP * Tc;
T_RCP $=$ Ns_RCP $* T c$;
disp(['Nsamp in Tc grid: an OFDM symbol with LCP = ', num2str(Nsym_u + Ns_LCP), '; LCP = ', num2str(Ns_LCP)])
disp(['Nsamp in Tc grid: an OFDM symbol with RCP = ', num2str(Nsym_u + Ns_RCP), '; RCP = ', num2str(Ns_RCP)])
\%\% Parameters for your numerology
df_mu = 2^mu*15*10^3;
\% The BS has 30 kHz SCS
Nfft_mu = 2048;
T_mu = 1/(df_mu * Nfft_mu);
\% Sample numbers for your numerology
Nmu_symbL = TsymbL/T_mu;
Nmu_symbR = TsymbR/T_mu;
Nmu_LCP = T_LCP/T_mu;
Nmu_RCP = T_RCP/T_mu;
disp(['Nsamp in T_mu grid: an OFDM symbol with LCP = ', num2str(Nmu_symbL), '; LCP = ', num2str(Nmu_LCP)])
disp(['Nsamp in T_mu grid: an OFDM symbol with RCP = ', num2str(Nmu_symbR), '; RCP = ', num2str(Nmu_RCP)])

The Taste of Channel Modeling

Multipath propagation

Higher Frequency Communication Issues

- The following is a classical multipath channel model

$$
\begin{aligned}
& \begin{array}{ccc}
h(t) \uparrow \\
& \uparrow \quad \uparrow \quad y(t)=h(t)=\sum_{n=0}^{N-1} \rho_{n} e^{j \phi_{n}} \delta\left(t-\tau_{n}\right), ~
\end{array} \\
& \tau=\frac{d}{c} \\
& K_{F S P L}=\left(\frac{\lambda}{4 \pi d}\right)^{2} \\
& H(f)=\mathfrak{F}(h(t))=\int_{-\infty}^{+\infty} h(t) e^{-j 2 \pi f t} d t=\sum_{n=0}^{N-1} \rho_{n} e^{j \phi_{n}} e^{-j 2 \pi f \tau_{n}}
\end{aligned}
$$

- The time delay dispersion does not depend on the frequency that we use - Hence, shorter CP leads to a complicated receive

A Simple Observation

Minimum reception for \boldsymbol{p}_{1} and maximum for \boldsymbol{p}_{2}

The Smartphone's Orientation Change

The Smartphone is near the human's head

The Smartphone is in the human's hand

Antenna Polarization

3D Polarization Calculation

Antenna Radiation Pattern

(a) Dipole Antenna Model

(b) Dipole 3D Radiation Pattern

(d) Dipole Elevation Plane Pattern

An Example for a Smartphone

Exam task examples

How to Find Paths in a Generic Environment?

How to Find Paths in a Generic Environment?

Frequency Selective Channel

Frequency Selective Channel

For OFDM signals, this becomes frequency-selective!

$$
\begin{aligned}
& \sin \left(\omega_{1} t\right)+\sin \left(\omega_{1} t+\omega_{1} \tau\right)=B_{1} \sin \left(\omega_{1} t+\psi_{1}\right) \\
& \sin \left(\omega_{2} t\right)+\sin \left(\omega_{2} t+\omega_{2} \tau\right)=B_{2} \sin \left(\omega_{2} t+\psi_{2}\right) \\
& \sin \left(\omega_{3} t\right)+\sin \left(\omega_{3} t+\omega_{3} \tau\right)=B_{3} \sin \left(\omega_{3} t+\psi_{3}\right) \\
& \sin \left(\omega_{4} t\right)+\sin \left(\omega_{4} t+\omega_{4} \tau\right)=B_{4} \sin \left(\omega_{4} t+\psi_{4}\right)
\end{aligned}
$$

Frequency Selective Channel and Polarization

Exam Questions Example

- Problem 1: Multiple Choice Questions (3p

In FDD, why is it important to send uplink Sounding Reference Signals (SRS)?
a. Because the base station needs to know the downlink channel state information to choose the correct downlink transmission scheme.
b. Because SRS provides reference symbols to enable coherent demodulation of uplink transmissions.
c. BecauseSRS enables cell selection for a UE by informing its channel state information to surrounding base stations.
d. Because the base station can obtain the uplink channel state information, which can be used for uplink resource scheduling, beam management, and power control.
e. None of the above options is correct.

- Problem 2: Short Answer Questions (6p)

3. When you turn on your cellphone, the very first signal transmitted from your cellphone is Random Access Channel (RACH) preamble. (1p)
(True, before sending RACH, a device can only listen and search for PSS and SSS)

- Problem 3: Discussion Questions (10p)

The flexible numerology of NR allows supporting a wide range of deployment scenarios, from large cells with sub-1 GHz carrier frequency up to mm-wave deployments with very wide spectrum allocations.
a. Due to flexible numerology, the initial access procedures in NR differ from LTE's procedures. Please, list several major differences and highlight possible pros and cons of the NR's the initial access procedures? (5p)
(In NR, a device needs to search for an SS block on the sparser synchronization raster; SS block periodicity from 5 ms to 160 ms ; a devices can assume the SS block is repeated at least once every 20 ms while 5 ms in LTE, SS burst set in NR; (2p) PSS is no longer ZC sequence; (1 p)
Cons: a device can spend too long time for searching for an SS block; PSS is Msequence based, which leads to orthogonality lose in the time domain ${ }_{\alpha} \ldots$ (2p))

Exam Task Example 1

Problem 1 - Cell Search

For the sake of simplicity, in exam tasks, we are using $3^{\text {rd }}$ order M -sequences. In the following figure, a Primary Synchronization Signal (PSS) generating scheme is given:

Figure 1. Generation of basic M-sequence: $x(k)=x(k-1) \oplus x(k-3)$.
Initial sequences for the scheme are determined as follows:

- $\operatorname{PSS}=0$ has initial sequence $[x(2), x(1), x(0)]=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$;
- $\operatorname{PSS}=1$ has initial sequence $[x(2), x(1), x(0)]=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$;

You will define numerology,

 BW allocation, and etc.- $\operatorname{PSS}=2$ has initial sequence $[x(2), x(1), x(0)]=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

After a UE is switched on, it starts the procedure of cell search. During the synchronization phase it detects a PSS sequence $\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$. Assume that one value of the received sequence is detected incorrectly (either 0 or 1) due to the channel influence.

Exam Task Example 2

1. TB CRC is calculated and attached
a. If TB >3824, then 24 -bit CRC;
b. Otherwise, 16-bit CRC.
2. Code-block segmentation
a. Code-block size is defined by LDPC coder;
b. 8424 bits for base graph 1 , 3840 bits for base graph 2;
c. CB CRC has 24 bits

To channel coding

Channel coding
3. $C B C R C$ is calculated and attached

Exam Task Example 2

```
11010011101100 000 <--- input right padded by 3 bits
1011 <--- divisor
01100011101100 000 <--- result (note the first four bits are the XOR with the divisor
beneath, the rest of the bits are unchanged)
    1011
        <--- divisor ...
00111011101100 000
    1 0 1 1
00010111101100 000
    1 0 1 1
00000001101100 000 <--- note that the divisor moves over to align with the next 1 in the
dividend (since quotient for that step was zero)
1011
iteration)
00000000110100 000
    1011
00000000011000 000
    1011
00000000001110 000
    1 0 1 1
00000000000101 000
1 0 1 1
00000000000000 100 <--- remainder (3 bits). Division algorithm stops here as dividend is
equal to zero.
11010011101100 100<--- input with check value
1011 <--- divisor
```


Exam Task Example 3

Problem 2 - Resource Allocation

A very basic OFDM transmitter chain intended for 5 G NR is shown in the figure below:

Figure 3: SNR per subcarrier vs frequency in the receiver.

Frequency-selective channel

