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Two a:pproaches to reduce Vdd:

- Reduce Vt to maintain (Vdd-Vt)

- Reduce S
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Energy Required for Switching 
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Principle of Operation

-On-state:

Carriers may tunnel from

the source to the channel

-Off-state:

Tunneling from the source is 

restricted due to the band gap

Tunnel injection across

triangular barrier
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pFET Implementation

pFET operation:

Gate is used to lift the bands 

in the gate region

pFET booster:

Use n++ InAs in the source
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nFET Implementation

nFET operation:

Gate is used to lower the bands

In the gate region

nFET booster:

Use p++ Ge in the source
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Materials selection

Important to reduce the tunneling barrier. Use narrow band gap 

material or heterostructure design.
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Nanotube used

for the modelling

15 nm gate length
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Simulated Data 

Lower break down voltage 

and lower band gap
Reduced

capacitance

Less carriers

in the channel
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Comparison 

MOSFETs and TFETs
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TFET Characteristics

j

TFET benefits

• Higher drive current at 0.2-0.3 V 

overdrive

• Option for power  saving!
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TFET  Process

• VLS growth combined with

top-down processing

• Digital etching

- ozone surface oxidation

- citric acid oxide etching

• Diameter scaling down below 10 nm

• Typical diameter 20  nm

• No etching of GaSb is observed
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• Sweep in forward and 

backward direction

• Using different 

voltage ranges

• Small hystersis of

5.4 mV

• Subthreshold swing 

independent of sweep

direction and range

Hysteresis/Measurement Reliability 
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Output Characteristics 

• Strong NDR in reverse bias 

with PVR 14.8

• High quality junction

• IDS= 92 μA/μm at 

VDS= VGS= 0.5 V

• Weak superlinear behaviour
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Transfer Characteristics  

• Sub 60 mV/decade operation at IDS ~ 1-300 nA/µm 

• Good electrostatic control (DIBL 25 mV/V), 5 mV  

Hysteresis

• Gate-current <IDS/100

• Smin = 48 mV/dec at 0.3 V

• I60= 0.31 μA/μm at 0.3 V

E. Memisevic et al., 

IEDM 2016
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Materials Characterization

E. Memisevic et al., Nano Lett 2017

• Nanowire with WZ-ZB

InAs transition

• Slowly varying 

composition gradient with 

transition  over about 20 

nm

• Strong strain field within  

heterostructure (2-3%)

• 28% Sb in InGaAsSb
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Where are the Defects?

E. Memisevic et al., 

Nano Lett 2017

• Excellent fit by TCAD modeling (ETH)

• Bulk  trap main contribution to leakage current 

• Oxide traps have vanishing influence besides

electrostatic effect
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Defects within the Oxide

E. Memisevic et al., Nano Letters 2017

M. Hellenbrand et al ESSDERC 2017

Each event can  be  

viewed as RTN

Time constants fit with model 

of defects within  oxide

Multiple jumps detected in some IVs

𝝉 Τ𝒄 𝒆 = 𝝉𝟎 𝒆𝒙𝒑 Τ𝒛 𝝀


