Contents: Power and Delay

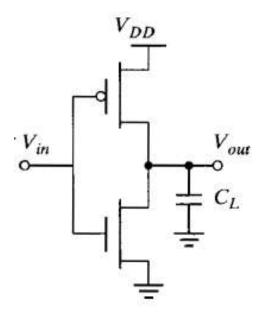
CMOS Static and Dynamic Power Consumption:

J Rabaey et al "Digital Integrated Circutis"

Integration of III/V HEMTs on Si:

S Datta et al IEEE Electron Dev. Lett. 28, 2007 p 685 " Ultrahigh-Speed 0.5 V Supply ..."

HEMTS for Beyond-CMOS:

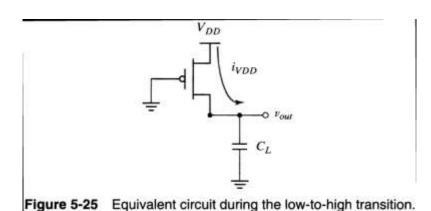

D-H Kim et al IEEE Trans. Electron Dev. 54, 2007 p 2606 "Logic Suitability of 50 nm ..."

CMOS Dynamic and Static Power Consumption

Advantages with CMOS:

Full logic swing
High noise margin
Superior robustness
Low steady state power consumption

Robust low-power digital technology


V_{out}=V_{in} for next stage C_L both parasitics and gate capacitance

Dynamic Power Consumption

Advantages with CMOS:

Full logic swing
High noise margin
Superior robustness
Absence of steady state power consumption

Calculate the charging energy during one switching event!


Calculate the charging energy:

$$E_{VDD} = \int_{0}^{\infty} i_{VDD}(t) V_{DD} dt = V_{DD} \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} dt = C_{L} V_{DD} \int_{0}^{VDD} dv_{out} = C_{L} V_{DD}^{2}$$

Calculate the stored energy:

$$E_{C} = \int_{0}^{\infty} i_{VDD}(t) v_{out} dt = \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} v_{out} dt = C_{L} \int_{0}^{VDD} v_{out} dv_{out} = \frac{C_{L} V_{DD}^{2}}{2}$$

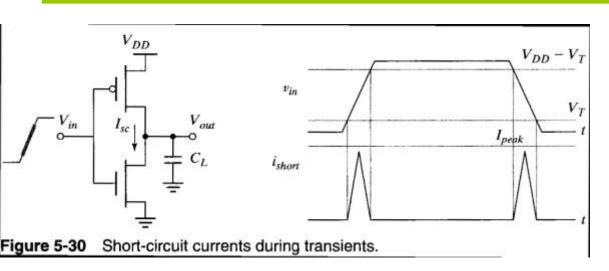
Dynamic Power Consumption

During charging (low-to-high transition) half energy is stored on capacitor, half energy is dissipated in the transistor

During discharging (high-to-low transition) half energy is stored on capacitor, the stored energy (half energy) is dissipated in the transistor

$$P_{dyn} = C_L V_{DD}^2 f_{0->1}$$

Example: 50 nm CMOS


 $f=2 GHz C_1=3 fF/gate$

 $V_{DD}=1.0 V$

 $P_{dvn}=6 \mu W$

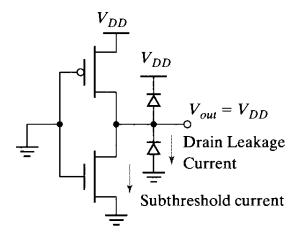
Note: Not all transistors active! (effectively reduces frequency) Voltage scaling reduces P_{dvn} Scaling reduces gate capacitance, but increases parasitic capacitance!

Direct-Path Current Power Consumption

During the finite time switching, a direct current is flowing in the transistor pair

Assume triangular current peaks

$$E_{dp} = V_{DD} \frac{I_{peak}t_{sc}}{2} + V_{DD} \frac{I_{peak}t_{sc}}{2} = t_{sc}V_{DD}I_{peak}$$


$$P_{dp} = t_{sc} V_{DD} I_{peak} f = C_{sc} V_{DD}^2 f$$

This is typically a minor part of the power consumption

Static Power Consumption: Drain Leakage

Leakage current typically 10-100 pA/ μ m². Drain area 50 nm² and 1 billion gates with V_{DD}=1.0 V gives 0.5 μ W.

$$P_{stat} = I_{stat} V_{DD}$$

Solution:

Use NWs to reduce channel leakage
Use SOI technology to reduce contact leakage

Figure 5-34 Sources of leakage currents in CMOS inverter (for $V_{in} = 0 \text{ V}$).

Static Power Consumption: Subthreshold Leakage

As the drive voltage is reduced, the threshold voltage should also be scaled (recall $V_t \sim V_{DD}/3!$). This implies that the subthreshold current is substantially increased.

Consider a 50 nm NMOS transistor with SS of 60 mV/dec. and V_t =0.4 V. At V_{GS} =0 V it consumes about 10^{-12} A. Reducing the threshold to 0.2 V increased the current a factor 300! In a 1 billion transistor operating at 1 V, we get a power consumption of 10^9 x300x10⁻¹²x1.0=300 mW!

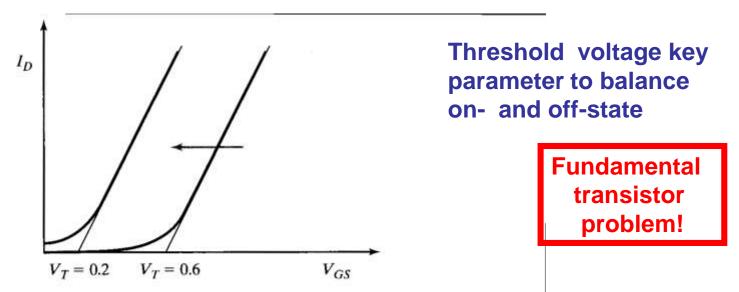
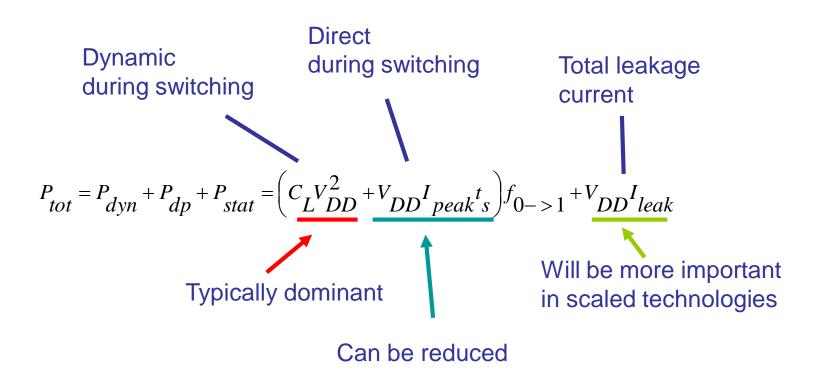



Figure 5-35 Decreasing the threshold increases the subthreshold current at $V_{GS} = 0$.

Put It All Together!

The Power-Delay Product

Introduce the power-delay product as a quality measure of a logic gate:

$$PDP = P_{av}t_p$$

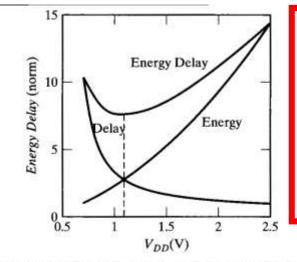
If the gate is switched at full speed, the PDP corresponds
To the <u>average energy consumed per switching event</u>
(0->1 or 1->0 transition)

$$PDP = C_L V_{DD}^2 f_{\text{max}} t_p = \frac{C_L V_{DD}^2}{2}$$

Better, The Energy-Delay Product

Introduce the energy-delay product, which balances the <u>performance and energy consumption!</u>

$$EDP = PDP \times t_p = P_{av}t_p^2 = \frac{C_L V_{DD}^2}{2}t_p$$


 t_p is the propagation delay (gate delay) and $f_{max}=1/(2t_p)$

Voltage Dependence on EDP!!!

$$EDP = PDP \times t_p = P_{av}t_p^2 = \frac{C_L V_{DD}^2}{2}t_p$$

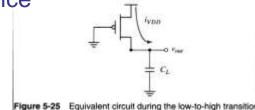
$$t_p \approx \frac{\alpha C_L V_{DD}}{\left(V_{DD} - V_T\right)^2}$$

$$EDP = \frac{\alpha C_L^2 V_{DD}^3}{2(V_{DD} - V_T)^2}$$

Increase V_d:

Speed improves
(higher current)
Energy increases
(more charge)
Optimum!

Figure 5-36 Normalized delay, energy, and energy-delay plots for CMOS inverter in 0.25-μm CMOS technology.


Extra (model validation):

$$t_{p} = \frac{t_{pHL} + t_{pLH}}{2} = \ln 2 \times C_{L} \left(\frac{R_{eqn} + R_{eqp}}{2} \right)$$

$$t_{pHL} = \ln 2 \times \frac{3}{4} \frac{C_{L}V_{DD}}{(W/L)_{n} \left(\mu_{n} \varepsilon_{ox} / t_{ox} \right) \left(V_{DD} - V_{Tn} \right)^{2}}$$

RC-time constant during switching

Use transistor equations to derive the effective transistor resistance

Ultrahigh-Speed 0.5 V Supply Voltage In_{0.7}Ga_{0.3}As Quantum-Well Transistors on Silicon Substrate

Suman Datta, Senior Member, IEEE, G. Dewey, J. M. Fastenau, Member, IEEE, M. K. Hudait, D. Loubychev, W. K. Liu, Senior Member, IEEE, M. Radosavljevic, W. Rachmady, and R. Chau, Fellow, IEEE

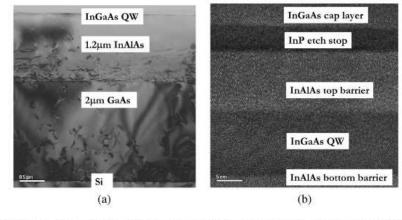


Fig. 1. Cross-sectional TEM images of In_{0.7}Ga_{0.3}As QW structures on Si using metamorphic buffer architecture; (a) Entire layer structure. (b magnification of In_{0.7}Ga_{0.3}As QW along with bottom and top barrier layers. The misfit dislocations are predominantly contained in the buffer layer.

- buffer layer techniques are available
- comparable mobility

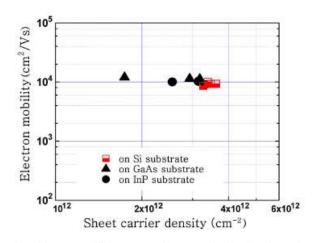


Fig. 2. Electron mobility versus sheet carrier density in n-channel In_{0.7}Ga_{0.3}As QW device layers grown on Si, GaAs, and InP substrates. In all cases, In_{0.52}Al_{0.48}As is the bottom and top barrier layer.

Comparable RF-data!

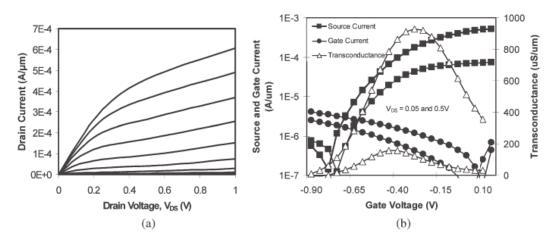


Fig. 3. (a) Output characteristic for 80-nm L_g In_{0.7}Ga_{0.3}As QW transistor on 3.2- μ m metamorphic buffer on silicon (gate voltage V_G is swept from 0.0 to -0.8 V in -0.1-V steps). (b) Transfer characteristic for 80-nm L_g In_{0.7}Ga_{0.3}As QW transistor on 3.2- μ m buffer on silicon with $V_{DS}=0.5$ and 0.05 V. Peak transconductance $g_{\rm m}$ for this device was 930 μ S/ μ m at $V_{DS}=0.5$ V.

- well behaved IV characteristics!
- good DC numbers at 80 nm Lg
- comparable RF data to lattice matched devices

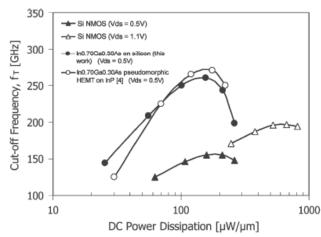


Fig. 4. Plot of deembedded unity gain cutoff frequency as a function of dc power dissipation for 0.5-V $V_{\rm DS}$ 80-nm L_g In_{0.7}Ga_{0.3}As QW transistors on both silicon and InP substrates, benchmarked against 60-nm L_g silicon NMOS transistors at $V_{\rm DS}=0.5$ and 1.1 V.

Logic Suitability of 50-nm In_{0.7}Ga_{0.3}As HEMTs for Beyond-CMOS Applications

Dae-Hyun Kim, Jesús A. del Alamo, Jae-Hak Lee, and Kwang-Seok Seo

n+ Cap	InGaAs, x = 0.53	20 nm
Stopper	InP	6 nm
Barrier	InAlAs, x = 0.52	8 nm
δ-doping	Si	(2)
Spacer	InAlAs, x = 0.52	3 nm
	InGaAs, x = 0.53	3 nm
Channel	InGaAs, x = 0.7	8 nm
	InGaAs, x = 0.53	4 nm
Buffer	InAlAs, x = 0.52	500 nm
The second secon	COMPANY COMPANY	

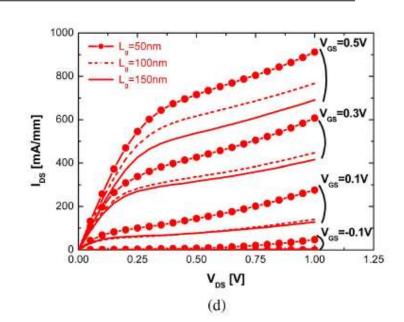

3 Inch S. I. InP Substrate

TABLE $\,$ I Detailed Gate Structural Information for Four Types of $In_{0.7}Ga_{0.3}As$ HEMTs That Are Fabricated in This Paper

	Type-A	Туре-В	Туре-С	Type-D			
Barrier	InP/In _{0.52} Al _{0.48} As	In _{0.52} Al _{0.48} As	In _{0.52} Al _{0.48} As	In _{0.52} Al _{0.48} As			
Stack	Ti/Pt/Au	Ti/Pt/Au	Pt/Ti/Mo/Au	Buried-Pt/Ti/Mo/Au			
t _{ins} [nm]	17	11	11	7			
$\Phi_{B}\left[eV\right]$	~ 0.4	~ 0.6	~ 0.7	~ 0.8			

Fig. 1. Epitaxial layer structure of the In_{0.7}Ga_{0.3}As HEMTs that are fabricated in this paper.

- 4 types of transistors
- Schottky barrier and insulator thickness
- good DC characteristics
- weak scaling with gate length

1600 Ti on InP Ti on InAlAs Pt on InAlAs Vos = 0.5 V Vos = 0.5 V Vos [V]

Fig. 5. Transconductance (G_m) characteristics of all 50-nm $\rm In_{0.7}Ga_{0.3}As$ HEMTs at $V_{\rm DS}=0.5$ V.

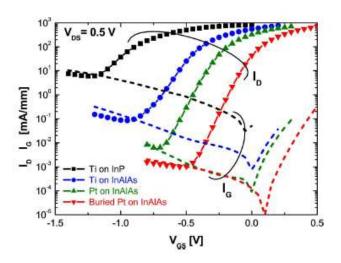


Fig. 6. Semilog plot of I_D and I_G of all 50-nm Ino.7Gao.3As HEMTs at $V_{\rm DS}=0.5~{\rm V}.$

Scaling with Schottky barrier and insulator thickness

- Tight control needed to improve the performance

 $\begin{array}{c} TABLE \quad II \\ SUMMARY \ of \ Logic \ Figures \ of \ Merit \ for \ Four \ Types \\ of \ 50-nm \ In_{0.7}Ga_{0.3}As \ HEMTs \end{array}$

	V _T [V]	DIBL [mV/V]	S [mV/dec]	$I_{\rm ON}/I_{\rm OFF}$		
Type-A	-1.10	300	200	63		
Туре-В	-0.65	220	130	1×10^3		
Туре-С	-0.55	180	100	7.2×10^3		
Type-D	-0.20	160	86	1.7×10^4		

Improved speed and/or reduced power consumption

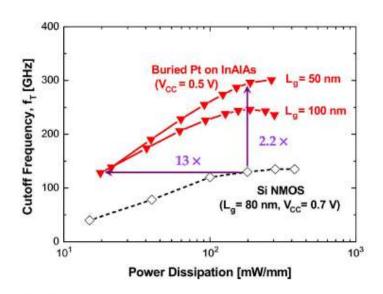


Fig. 11. Cutoff frequency (f_T) of our 50- and 100-nm type D $In_{0.7}Ga_{0.3}As$ HEMTs and 80-nm Si MOSFETs as a function of the dc power dissipation.

 Well selected technology is required to maximize lon/loff ratio Depending on bias condition benefits can be found in the areas of speed and/or power dissipation

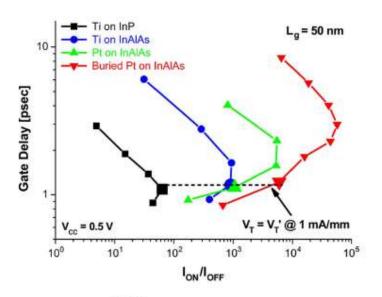


Fig. 14. Gate delay (CV/I) of all 50-nm $In_{0.7}Ga_{0.3}As$ as a function of $I_{\rm ON}/I_{\rm OFF}$.

22FFL: A High Performance and Ultra Low Power FinFET Technology for Mobile and RF Applications

B. Sell, B. Bigwood, S. Cha, Z. Chen, P. Dhage, P. Fan, M. Giraud-Carrier, A. Kar, E. Karl, C.-J. Ku, R. Kumar, T. Lajoie, H.-J. Lee, G. Liu, S. Liu, Y. Ma, S. Mudanai, L. Nguyen, L. Paulson, K. Phoa, K. Pierce, A. Roy, R. Russell, J. Sandford, J. Stoeger, N. Stojanovic, A. Sultana, J. Waldemer, J. Wan, W. Xu, D. Young*, J. Zhang, Y. Zhang and P. Bai

Logic Technology Development, *Corporate Quality Network, Intel Corporation, Hillsboro, OR, USA email: bernhard.sell@intel.com

	High Performance Logic Transistor		Low Power Logic Transistor			Ultra Low Power Logic Transistor	Analog Transistor			High Voltage Transistor			
Device	ULVT	LVT	LPLVT	HP	Nom	LP	LL	AL	AL	AL	TGLV	TGMV	TGHV
VDD [Volt]	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	1.2	1.5	1.8
Gate Pitch [nm]	108	108	108	108	108	108	144	144	216	270	216	216	270
Fin Pitch [nm]	45	45	45	45	45	45	45	45	45	45	45	45	45
Tox	Thin	Thin	Thin	Thin	Thin	Thin	Thick	Thin	Thin	Thin	Thick	Thick	Thick
Performance Metric	NMOS/PMOS Idsat/loff [mA/um]						GM*Rout NMOS/PN Idsat [mA/			1000			
Value	1.24/1.22 @ 0.7V, 10nA/um				0.81 @ 00pA/u		0.10/0.10 @ 0.7V, 1pA/um	47	54	60	0.77/	1.01/ 0.87	1.11/

Table 1. Transistor design rules and electrical characteristics for logic, analog and high voltage transistors developed for 22FFL.

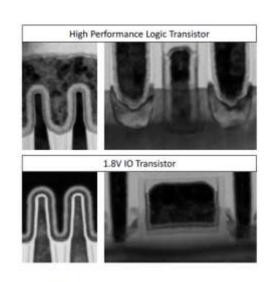


Fig. 1. Fin and gate cut TEMs of logic and 1.8V IO transistors.

22FFL: A High Performance and Ultra Low Power FinFET Technology for Mobile and RF Applications

B. Sell, B. Bigwood, S. Cha, Z. Chen, P. Dhage, P. Fan, M. Giraud-Carrier, A. Kar, E. Karl, C.-J. Ku, R. Kumar, T. Lajoie, H.-J. Lee, G. Liu, S. Liu, Y. Ma, S. Mudanai, L. Nguyen, L. Paulson, K. Phoa, K. Pierce, A. Roy, R. Russell, J. Sandford, J. Stoeger, N. Stojanovic, A. Sultana, J. Waldemer, J. Wan, W. Xu, D. Young*, J. Zhang, Y. Zhang and P. Bai

Logic Technology Development, *Corporate Quality Network, Intel Corporation, Hillsboro, OR, USA email: bernhard.sell@intel.com

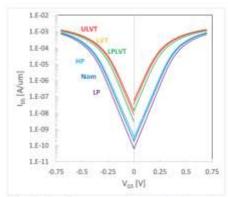


Fig. 5. I_{DS}-V_{GS} curves demonstrating low subthreshold slope and DIBL for all logic devices.

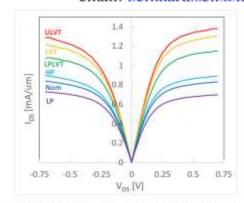


Fig. 6 Balanced I_{DS}-V_{DS} characteristics for all logic transistors.

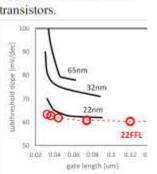


Fig. 7. Channel length dependence of thin subthreshold slope compared to previo technologies.

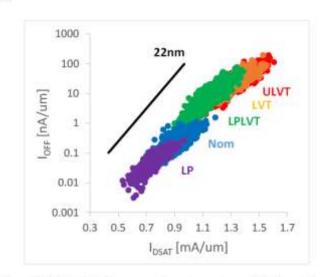


Fig. 3. NMOS I_{Dsat} vs. I_{off} showing 57% gain over 22nm HP transistors presented in [1].

Improved speed and/or reduced power consumption

Intel 22nm FinFET (22FFL) Process Technology for RF and mmWave Applications and Circuit Design Optimization for FinFET Technology

H.-J. Lee, S. Rami, S. Ravikumar, V. Neeli, K. Phoa, B. Sell, and Y. Zhang Logic Technology Development, Intel Corporation, Hillsboro, Oregon, USA, email: hyung-jin.lee@intel.com

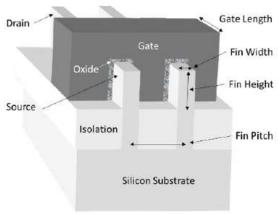


Figure 1: 3D view of FinFET device structure

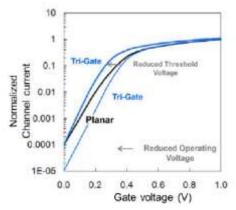
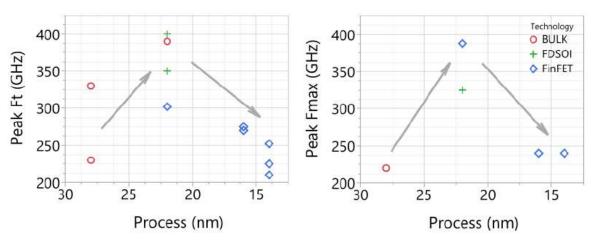



Figure 2:I-V curves of FinFET and Planar demonstrating DIBL improvement by FinFET technologies

Tri-gates optimized for RF-operation

Parasitics are Limiting Performance at Scaled Nodes

- Currently best performance is obtained at about 20 nm node!

Figure 5: f_t and f_{max} trends by process node: both f_t and f_{max} reach the peak performance around $20 \sim 25$ nm due to the excessive parasitic capacitance by high density interconnect

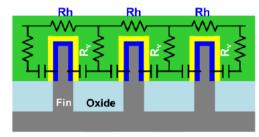


Figure 3: FinFET gate resistance structure: Horizontal resistance (R_h) and Vertical resistance (R_v) surrounding fin structures

- Parasitics are related to gate resistance and capacitances (lack of space)