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Benchmarking Nanotechnology for
High-Performance and Low-Power
Logic Transistor Applications
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Amlan Majumdar, Matthew Metz, and Marko Radosavljevic

Transistor evolution:
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Fig. 1. Scaling of transistor size (physical gate length) with technology node to

sustain Moore’s Law. Nodes with feature size less than 100 nm can be referred to
as nanotechnology. By 201 1, the gate length is expected to be at or below 10 nm.
Transistor scaling will be enabled by integration of emerging nanotechnology
options on to the i platform.
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Four key metrics for logics:

Speed
Intrinsic speed (CV/I)

Switching energy
Energy-delay product (CV/I*CV?)

Scalability
Subthreshold slope vs L

Off-state leakage
CV/lvs |/l



Method for benchmarking

Typical nanotube characteristics: Definition of data points:
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Fig. 3. Example (a) /-  and (b} [ p—! s characteristics of a CNT FET TOTAL 04 oM
illustrating our benchmarking procedure. The | choice is made by selecting

the highest available | s, which, in this example, is 1.5 V. The shaded box in COX = 272-505 /In(2h/R)

(a)is anchored around | - = ! . as discussed in the text. The width of the box r

denotes the | o swing of 1.5V, which is consistent with the |~ choice. The

values of {ms and {mpy are shown as black diamonds in both (a1 and (b, Normalization by Wldth 27Z'R
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Gate Delay
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Fig. 4. Gate delay {intrinsic device speed '\ /! ) versus transistor physical

gate length of PMOS devices.

lI/VNMOS have better performance!
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Energy-delay product
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Fig. 7. Energy-delay product per device width versus transistor physical gate 1 i o o0 A L
length of NMOS transistors. GATE LENGTH [nm]

Fig. 6. Energv-delay product per device width versus transistor physical gate
length of PMOS transistors,

HI/V NMOS have better performance!
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Scalablility and leakage
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Fig. 8. Subthreshold slope versus transistor physical gate length. The planar

and nonplanar 51 FETs as well as the [II-Y planar devices are n-channel I

transistors, while the CNT FETs are p-channel transistors,
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Fig. 11. Gate delay (intrinsic device speed, C'\ [/} versus on-to-off state
current ratio o/ fopr of 51 PMOS transistors with L, = 00U nm and
Tinmat Voo = 1.9 V.and a CNT PMOS transistor with £, = 5{ nm and
Vo = 103 W [15]. The three circled points were used in the PMOS ' [/ {
versus L, plot in Fig. 4, where the | - swing is anchored around \ 5 = | .
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High Performance Fully-Depleted
Tri-Gate CMOS Transistors

B. 8. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, Member, IEEE, A Murthy,
E. Rios, Member, IEEE. and R. Chau, Senior Member, IEEE

Advanced Device Architectures:
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Performance of 60 nm gate length

.,,=0.52 mA/um  1..=1.14 mA/um DIBL=48 mV/V  DIBL=41 mV/V

IOff=24 nA/Mm IOff=7O nA/Hm DIBL=V _ V ) / 13_005
SS=69.5 mV/dec SS=68 mV/dec v, I e i Vi ( )

1.2E-03 : === =
1E-037 Vd=-1.3V | Vd=1.3
1.0E-03
1E-047
E 8.0E-04 _E {E-05"
g 6.0E-04 2 1E-06- |
T ; = |
4.0E-04 [/ | — 1E-07" Vd=-0.05V
2 ) I
2.0E-04 - ' 1E-087
_—__—._— |
0.0E+00 == . : : 1E-09 — R R
14 105 07 035 0 035 07 105 14 8 i T ML L L
Vd (Volts) v {volts)
Fig. 3. |4\ characteristics of the 60 nm N- and P-MOS devices of Fig_ 2. E-P[g':-l 'I"'-_F]I'l 2 ::ham;rtlensfiﬂ ot .69 ;‘:ﬂ Ff;te _-153:'%}]1;3‘{-}"10]? a]:rl P}:EGS
The gate voltage was ramped to 1.3 V in increments of 0.1 V. ]:H_Il.lE-[D]’E.I g Cll.mezh g B b intaic ki e
e L g 1 I'5j.
15 A oxide thickness Comparable to well-optimized
planar devices! 8

Nanoelectronics: Scaled CMOS



Wol 441|125 May 2006|doi:10.1038/nature0 4796

nanire

LETTERS

Ge/Si nanowire heterostructures as high-

performance field-effect transistors

= :
Jie Xiang'*, Wei Lu'*, Yongjie Hu', Yue Wu', Hao Yan' & Charles M. Lieber'* /

- Ge/Si core shell nanowires
- 15 nm core

- p-type conduction

- High-k dielectrics (ZrO,)

- ballistic transport

- 500 nm mean free path

Nanoelectronics: Si Nanowires

High-w film Nanowire

Cuantum well

Figure 1| Ge/Si core/shell NWFET. a, Schematic of a Ge/Si core/shell
nanowire, b, Cross-sectional diagram showing the formation of hole-gas in
the (ze quantum well confined by the epitaxial Si shell, where CB is the
conduction band and VB is the vilence band, The dashed line indicates the
Fermi level, Ep. The valence band offset of - 500 meV between Ge and 5i
serves as a confinement potential to the hole-gas as discussed previously”.
€, Schematic of the NWFET device with high-x dielectric layer and Au top
gate, d, Top-view SEM image of a typical device. The Au top gate overlaps
with the Ni source/drain electrodes to ensure full coverage of the channel,
Scale bar, 500 nm. e, Cross-sectional TEM image of a device prepared using
7nm Zrid; dielectric. Dotted lines are guides to the eye showing boundaries
between different materials denoted in the image. The nanowire is tilted off
the imaging axis. Scale bar, 10 nm.



Device Characteristics
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Figure 2 | Characteristics of high-performance Ge/Si NWFET. a, I V4.
data for device A (L = 1 pm, 4nm HfO; dielectric) with V= —=21to0 2V in
0.25V steps from top to bottom. b, I~V for device A with blue, red, and
green data points corresponding to Vg, values of =1, =0.5 and =001V,
respectively. The leakage current through the gate electrode (1) is
<10 " A, which excludes I as source of increase in [gat Vg, = ~0.5V.,
Inset, linear scale plot of I3 versus ¥V, measured at Vg, = — 1V, The blue-
shaded area defines the 1 V gate voltage window described in the text, where
Vypwas determined from the intercept of the tangent of maximum slope
{linear transconductance) region of the 14V, curve'', ¢, I;-V, data for
device B (L = 190 nm, 4 nm HIO, dielectric) with blue, red and green data
points corresponding to Vg, values of —1, — 0.1 and — 0,01V, respectively.
Inset, linear scale plot of I 5 versus V; measured at Vg = —1V.
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Figure 3 | Benchmark and comparison of Ge/Si FETs. a, Intrinsic delay =

versus channel length for seven different Ge/Si nanowire devices with HfO, =107
dielectric (open circle) and Zr0; dielectric (open square ). Data for devices A

and B are included. The I, values were measured at Vo = Vo — 0.7V, 1o
as discussed in the text. The dashed line is a fit to the data points while 108
solid line is the Si p-MOSFET results from ref. 4. b, Intrinsic delay versus

onfoff ratio for the two devices in Fig. 2. Arrows indicate the values of v, V) V)
intrinsic delay used in a. ¥ '
Figure 4 | Control of threshold voltage and ambipolar conduction through
device design. a, [~V ; curves for two L = 300 nm devices with Au (blue)
Gate d elay: and Al (red} top gate electrodes (V g = —1 V). lnset shows histogram of Vi
with thesame V' axis for a total of 68 L = 300 nm devices with Au (blue) and
Al (red) top gates. Solid lines correspond to gaussian fits to the two
distnbutions. b, Schematic and SEM image of the asymmetrical gate
_— _— —_ structure designed to suppress ambipolar conduction. Scale bar, 300 nm.
= Lg - 1 },lm => T_57 pS &, [o-V; of partially gated device with ambipolar conduction; bias was
applied to contact 1 (Vg = V 2}, Inset, schematic of band bending in the
—L =O . 1 9 um => ’C=4 ps NWEFET at finite bias. Arcow denotes elect ron injection at the drain contact,
g d, 1V, for Vi, =V, Inset, schematic of band bending with electron
injection denoted by arrow. The red, blue and green curves in ¢ and d
1 . 1 1 correspond to Vg, values of —1, —0.8 and — 0.6V, respectively. e, Linear
NanoeleCtronICS " SI NanOWI reS scale gV, (Vg = — 1V} for the devices in € and d. The two devices have
the same peak g, = 35 pS and [ 400 = 73 pA.
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Vertically Stacked SiGe Nanowire Array Channel
CMOS Transistors

W. W. Fang, N. Singh, Member, IEEE, L. K. Bera. H. S. Nguyen, S. C. Rustagi, Senior Member, IEEE,
G. Q. Lo, Member, [EEE, N. Balasubramanian, Member, IEEE, and D.-L. Kwong, Senior Member, IEEE

-Ge condensation technigue
-- SiGe oxidizes faster than Si
-patterning of 100 nm fins

- cyclic oxidation and etching to
20-30 nm diameter wires

- 350 nm gate length, t,, 4 nm

Fig. |. Tited view SEM images after release of stacked NW. (o) Schematic
of 51Ge NW stacks after oxidation and release. (b) 2X laterally arrayed three-

stacked N'Ws. ic) 2X laterally arrayed four-stacked N'Ws with the dashed line = |-S| and imp|antati0n Of S/D regionS
indicating the gate layout. (d) 5X laterally arrayed four-stacked NWs.

Nanoelectronics: Si Nanowires 12



Device characteristics
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Fig. 2. Per NW [,V and gm—Vy plots for stacked NW n-FETs and p-FETs

i = A : iameter - . : . ;
with Lg = 500 nm and NW diameter ~30 nm Fig. 3. Per NW I,-Vy plot for n-FETs and p-FETs with gate overdrive

voltage varying in steps of 300 mV,

Performance scales with number of wires in stack!
Surface is Ge rich

Hole accumulation at the surface and electrons in the core
Difference in scattering affects g,

Nanoelectronics: Si Nanowires 13



Status 2019: Device Development

Multiple-Vt Solutions in Nanosheet Technology for H  igh
Performance and Low Power Applications

R. Bao, K. Watanabe, I. Zhang, J. Guo. H. Zhou, A. Gaul, M. Sankarapandian, J. Li, A. R. Hubbard, R. V ega, S.
Pancharatnam. P. Jamison, M. Wang. N. Loubet. V. Ba sker, D). Dechene, D). Guo, B, Haran, H. Bu, M. Khare

IBM Semiconductor Technology Research. Albany, NY, email: rhao@us.ibm.com

High-k and metals
to tune work function
Introduced between
The nanowires

(e) -

Nanoelectronics: Si Nanowires 14



Device characteristics
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TSMC 5 nm node 2020

Snm CMOS Production Technology Platform featuring full-fledged EUV, and
High Mobility Channel FinFETs with densest 0.021pum’ SRAM cells for
Mobile SoC and High Performance Computing Applications
Geoffrey Yeap. S.8. Lin, Y M. Chen, H.L. Shang, P.W. Wang, H.C. Lin, Y.C. Peng, 1.Y. Sheu, M. Wang. X. Chen, B.R. Yang,
C.P.Lin, F.C Yang, Y K. Leung. D'W. Lin, C.P. Chen, KF. Yu, DH. Chen, C.Y. Chang, HK. Chen, P. Hung, C.S. Hou, Y .K.
Cheng, J. Chang, L. Yuan, C.K. Lin, C.C. Chen, Y.C. Yeo. M.H. Tsai. HT. Lin, C.O. Chui, K.B. Huang, W. Chang, H.]. Lin_

K.W. Chen, R. Chen, S.H. Sun, Q). Fu, HT. Yang, H.T. Chiang, C.C. Yeh, T.L. Lee, C.H. Wang, S.L. Shue, C.W. Wu, R. Lu,
W.R, Lin, J. Wy, F. Lai, Y H. Wu, B.Z Tien, Y.C, Huang, L.C. Lu, Jun He, Y. Ku, J, Lin, M. Cao, T.5. Chang, 5.M, Jang

Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan, R.O.C. Email: gveap(@tsmc.com
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