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Quantum Computers

Classical Digital Computers
Why quantum computers?
Basics of QM

« Spin-Qubits

« Optical qubits

« Superconducting Qubits

« Topological Qubits



Classical Computing

« We build digital electronics using CMOS
« Boolean Logic

+ Classical Bit — 0/1 (Defined as a voltage level 0/+V,)
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Classical Computing

« We build digital electronics using CMOS

S
« Boolean Logic l_

 Classical Bit — 0/1 “ )

|
T 1T

* Very rubust!

 Modern CPU - billions of transistors (logic and memory)
 We can keep a logical state for years

« We can easily copy a bit

* Mainly through irreversible computing

However — some problems are hard to solve on a classical computer



Computing Complexity

Searching an unsorted list Factoring large numbers

Grovers algo. — Shor’s Algorith
Shor’s Algori 'T BQP « P — easy to solve and check on a

/R \ classical computer ~O(N)

NP — easy to check — hard to solve on
a classical computer ~O(2N)

« BQP - easy to solve on a quantum
computer. ~O(N)

- BQP is larger then P

« Some problems in P can be more
\ efficiently solved by a quantum
t
Simulating comprer
quantum
systems

Note — it is still not known if P = NP. It is very hard to build a quantum computer...



Basics of Quantum Mechanics

A state is a vector (ray) in a complex Hilbert Space

Dimension of space — possible eigenstates of the state

For quantum computation — two dimensional Hilbert space
Example - Spin Y% particle - |T) or 1)

Spin can either be ‘up’ or ‘down’



Basics of Quantum Mechanics

» A state of a system is a vector (ray) in a complex vector (Hilbert) Space.

» Denoted |x) using Dirac notation. (You can think of this as a vector in 3D Q.

space.)
« Orthonormal basis vectors — various observables (Energy, position, /\

momentum, spin direction...).
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« A state can be in a superposition of the basis vectors

0 |1) Example — the position of Example — spin of a electron
0) an electron on a molecule 1)
1 10) T ®
2) 1) Lm "
> |T)
5) e

13) / 12)
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+ 14) 13)
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Basics of Quantum Mechanics

Depending on the choise of basis — the state of an particle can be
described using different basis vectors!

lY) = lay)
lY) = alby) + blb,) + c|bg) + -

Ex: Difference between position and momentum eigenstates

Uncertainty relation [x,p] = —ih

Coefficients a, 5,y are complex numbers

State is normalized:|a|? + |B|?+|y]? + - =1

Can be expressed in various bases (observables)
 Energy

« Position

« Momentum



Basics of Quantum Mechanics

For quantum computation — effective 2D dimensional Hilbert space
This is called a quantum bit (qubit, qbit)

) = al0) + B|1) = alT) + BIL)

l

« Example - Spin %z particle - |T) |) : 2 dimensional Hilbert space

) =alo)+ 11 (p)

Matrix representation of a state

o anb  — two complex numbers
State is normalized: a? + g% =1




Quantum Bit — two level system

Quantum system with only two distinct (energy) states

« Spin %z particle (spin) $
* Double quantum dot (position) 10} |1)
« Atom (orbitals) @ O
,'Il; E2 > X
- E

Normalized

Complex coeff.
< 1) = al0) + BI1)

6 6\ . a
— qj — — l¢
|Y) sm<2)|0)+cos<2>e |1) (ﬁ)
Computational basis (with spins)

* Spin up in z-direction For one spin 2 particle — the Bloch sphere
» Spin down in z-direction represent the spatial orientation of the spin!

Bloch Sphere representation

Spin in x-direction? |g ) = 1 10) + 1 1)

V2 V2



Many qubits

Qubit A

1

Qubit B

[Y)a = anl0)y + Ball)a

[Y)p = agl0)p + B5l1)p

Tensor product A
/ ! H,
1Y) =10)4 ® [1)p = |01) .
B
s

Example: Two non-interacting qubits — product state

1Y) = [P)a ® [P)p = axag|00) + Baag|10) + asfp|01) + B4Bp|11)

Example: Two correlated qubits — entangled state

1 . ]
lY) = —(]10) + |01) This can NOT be written
\/7( ) as a product state!

N Coupled gbits requires 2¥ complex
numbers to describe

N=100 : 219° ~ 103° complex numbers

Example: General 2 qubit state )

) = a|00) + B[10)+y|01)+6]11)

/|

N)/'\ " |11)
1)



Superposition of 2-bit states

1
=—|[0)+ |1 one spins — 2 states |i1

[¥) 7 [[0) + [1)] p T

1
) = 7 [[00) + [10) + [01) + [11)] Two spins — 4 states

1 .
lY) = 7 [|000) + |001) +]010) + |100) + |011) + [110) + |101) +|111)]  Three spins — 8 states
) =---. 100 spin 2 : 2199 = 103° dimensional space

« There are 108 atoms in the observable

lY) = ---. 300 spin Y% : 2399 = 10°° dimensional space universe

« Hilbert spaces are big!

A quantum state can represent a huge number of O's and 1’
simultaneously!




Quantum System Dynamics

1Y(0)) = a(t)|ay) + BO)|ay) +y(©)laz) + - A quantum system evolves in time set by the

Schrodinger Equation, where H is the Hamilton operator.
Cln A

cd
in == (@) = AOHO)

A 2
=5 p A . .
H=>+V(X) Electron in potential
H = -yB,o, Spin in magnetic field

This give a set of coupled differential equations for
the coefficients o 3 ...

* By applying an Hamiltonian to a quantum state —
move the state in the Hilbert space over time. We
can in this way control a quantum state.

 This is deterministic and time reversible!



Measurement in Quantum Mechanics

W) = ala;) + Blay) + ylas) + - Measurement — apparatg§ which. de’germ?nes an
observable (Energy, position, Spin direction...)
an A
T\:* 2 ) = —m —| )
! 50%
' "

During a measurement of an observable a \
State collapses to an eigenstate with probability 50%
B, = Kan[P)|?
d .
 Not deterministic and NOT time reversible! ih— () =H®O(@) ?




Measurement of states

N =100 o 1030 states

|Y) = —=[|000...) +]001..) +]010..)+|100..) + |011 ...) + |110 ...) + ---]

Will randomly select ONE of the states with
equal probability!

Gives 100 bits of information or out 103°

Direct application of quantum parallelism
is not an easy task!

Entangeled state

1) Separate two entangled qubits (by light years (1))

I I 2) Measure qubit A (will show 0 or 1 with 50%)
l l 3) If Ashows |0), - we now know that qubit B is |1)5

1

|¢>=ﬁ

(]10) +]01)) 4) Spooky action at a distance!




Single quantum Gate — Bloch Sphere rotation

|Y) = sin (g) |0) + cos (g) el?® |1)

) =alo) + 11 (p)

Matrix representation of a state

' Quantum gates are
) U L reversible!

T

Let H(t) act on |y) for some time {,.

These can in general be build by applying time varying
B/E field to a spin/position gbit in x,y and z direction for

a fixed time.
. . 0 1 . .
NOT gate & rotation around x axis |0) — |1) 1 0 l\/]lcatrlx reprt'esentatlon
OT a operator
_ 1 111 1 Matrix representation
Hadamard gate:|0) — % (|0) + |1)) ﬁ [1 _1] of a operator

These also work on superpositions: [y) = a|0) + B|1)



Quantum Gate — Controlled Gate

Let H(t) act on x and y for
some time t,.

L
|x) U | )
> ly) Uly) or |y)

If x=0 do nothing to qubit y
If x=1 apply rotation U to qubit y

CNOT Gate

0 0\ .
|} = sin (E) |0) + cos (E) e'? 1) If x = |0) then y=y
If x = |1) then apply NOT to y

 All controlled gates will be unitary

« Controlled Gates also work on super positions —
quantum parallelism!



Universial set of quantum gates

CLIFFORD+T GATE SET These set of gates are ‘universal’
Hadamard Gate 7L v E 11] Can implement all logic functions
o NAND, NOR etc.
T Gate 7L [0 evi'Z]
" 1 gbit gate — controlled rotation of Bloch Sphere
Hermitian of T 1 Q
Gate — 7Tt 0 e "% .
0 Controlled Gates — almost anyone will do, controlled NOT
Phase Gate Hyal [(1) l_] (CNQOT) or controlled phase CPHASE most common.
Hermitian of 1 0
Phase Gate — ST 0 —i 1 11r 1 ,
0 1 H|0) : — =— H[0) = —=(]0) + |1)
Not Gate T L 0] | \/7 [1 _1] lo] \/E ll] | \/i (l | )
(1 0 0 0]
Feynman 0 1 0 of [¥)=al00)+pB[10)+y|01)+5[11)
(CNOT) Gate ‘ 0 0 0 1 a
001 0 — [B
Fig. 5: The Clifford+T gate quantum gate set. Y

)



Example - Deutsch’s Algorithm

)= EEEAEAEAEE
X f(0) # f(1) “balanced” 0 0 0 1 1
y yf(x) f(0) =f(1) “constant’

=
<

1 0 1 0 1
C b b C

f (x) takes a single bit {0,1} into a single output bit {0,1}.

If we don’t know if f(x) is “balanced” or “constant” — but would like to know

Classical Computer — calculate f(0) and f(1) and compare — need to evaluate f twice!

The quantum circuit below can achieve this by evaluating f(x) only once!

10)4 H U, H —e Measure qubit A i oy  f(0)=f(1)
11)p H 1) f(0) # f(1)




General Quantum Computing

w T — —~
|2}10) =[x} f(x)) § . _;q:|: g
1 N 1 2N -1
Input register L/—E(IO) + |1))] =Nz Z |x) This can be done with N Hadamard gates
0
N4 By just computing the f(x) once, f(x) is
1 “calculated” for all 2N values!
)10} = o573 z ) 1f () N=100 — 103 speedup!
0
S H direct t of
owever, a direct measurement of x
2N/2 2 ) 1f () _Z\lx(’)lf(x(’)) gives only ONE random value of f(x;)!
0
Measurement of |x) Need clever algorithms similar to Deutsch Problem

to try and extract more information from the
correlation between x and f(x)



Decoherence — random Bloch sphere rotatio

A single gbit will couple to the environment
(example for a single Yz spin)

Nuclear spins
« Stray B-fields

Couples through spin-

* Electrical fluctuations .. )
orbit interactions

* Interactions with photons
» Electrical Noise

—

This will induce random H (t) which randomly
shifts around the quantum state.

Quantum states can be very fragile. nS — m$S
before the gbit is completely random.
Decoherance time (T1/T2).



Decoherence — random Bloch sphere rotatio

 T1 - Spin relaxation Time
« T2 -Decohrerance Time

Given two distinct energy states for

Y If particle initially in E; — how long time until
it is found in E,? Y,
T1 — Spin relaxation time

If particle in a superposition - how long until >\

the phase relation between is lost? > X
T2 — decoherence time /
These are measures of the ‘quality’ of a

gbit. We need to do our gate operations
shorter then T1 and T2.




Quantum Computers - implementations

— Spin qubits (compatible with Si processing!)

— Optical traps (Most stable!)

— Superconducting Qubits (Most qubits!)

— Majorna Zero Modes — Topological Qubits (Most difficult to understand. Best?)



lon Trap — Optical Qubits

P, Atomic lons trapped in RF/DC field
2 N Laser cooling
Pz \35““”‘ Strongly isolated from environment
| Bﬁﬁnm\ Dsz . +Very long decoherance T1 times (s-
393nm \ A years(!!)
3970m  7ognm| D2 -Scalability?
$ -Geometry?
& 000000 © Smlﬂ}

10um

Qubit Operation
B-field + 729 nm laser — excite between |0) and [1)

Multi-qubit operation motivated through phonons

Readout — 397nm (and 866nm) laser
Scattered light only if atom in state |0)



Spin Qubits

Single %2 spin in B-field

Two energy eigenstates
— Spin up and spin down

Energy split is small

B=1T (InAs, g'=-10)
gives AE, = 0.5 meV
Thermal energy (~kT/q) should be smaller then this value

T=300K - 25 meV
T=1K - 0.08 meV

We need to operate our qubits at cryogenic temperature!



Spin Qubits Manipulation

By applying a varying RF
magnetic field in x-y
direction

Also works for field in x
direction only — have to
use pulses.

Spin position can be
controllable shifted

Resonance — only
effective is RF frequencies
close to energy difference
are effective in rotating the
spin!

> B,cos(wt)

By sin(wt)

Can access different qubits by

global B-field. Single gbit control!

hw = AE, = g*u,B




Spin Qubit Implementation

EEIT

SiGe

[BEL*rTTTIT
-

Charge sensor
(Spin detector)

Single Electron Transistor
— can localize single
electron in each gate

Applying RF B-field —
rotates spin. Qbit control!

Q:NCIT

i b = Wty

[iin ¥ = [04}

L =
il i - Pl

= R

T T T T =
0 200 400 800 800
Tp(ns)

] H=-]5"-5;

g —

Si qubit

TR (ns)

T T T T T T
0 2 4 ] 8 10 12

TR (ks)

Rabi oscillation — rotate the spin
between up and down.
Spin relaxation time T1 - yS range

Two nearby spins will influence each other through
exchange mechanism — can build CNOT gates!



Decoherence

(@)

FIG. 24. One-electron spin interacts with (a) a single nuclear
spin in an atom and vs (b) many nuclear spins in a semicon-
ductor quantum dot.

Electron moving in a electric field will experience
a magnetic field. This leads to spin-orbit-
interaction. Electrical noise (and phonons!) can
thus couple to a spin.

Spin-orbit-interaction is stronger for heavy
elements (llI-Vs)

Single Electron will interact with a background
of many nuclear spins

These are randomly distributed in the material
nS-uS decoherence time

v

Spin qubits
Materials with no nuclear spin

v

. S
° C12

Light elements (C, Si — low SOI)
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Spin Qubit Si??, Si2-P

a 1 ! C e, 31Pu| Np+ b MICTOWEVE PUISE IENGIN |us)
I Vo [T |
A\ \ Bli§ n § 0 g Electron quantum dot
\\\ oo I [ oY) §os £ Spin qubit
r. ! 11 — = e 0. 3 —
\\ /CS‘ P m T:.gﬁ, I '504 2 T2=268 “S
502 g
b > ‘:SE o R Electron — Donor
I ol A BICESE Qubit T2=567 uS
0.9 um , ) P
: ,..\\ gu.s :
o086
200 g i\. EDA . :
':9: Cw : 02 Nuclear Spin Qubit
2, T2=0.6S

0 02 04 086 08 i1 100 300 500 700
Free precession time (ms) Free precession ime (ms)

Electron Spin - This can be increased to
T2tstaidsocedditda T, = 30S () using pulse
focusing techniques!

=
[ = —
A

m
-

l
" T1>> 100 pS (1)

Spin-up propartion
s = o
B

(R

1

%]

- ]
i i i i i i i d
0 10 20 30 40 50 60 70 B0 90 100
Microwave pulse length (us)
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Spin Qubit Implementation

Spin qubit summary

+Can be made with standard Silicon Technology (!!)
+Small — 10 — 100 nm size

+Long decoherance times can be demonstrated
+CNOT gate

+ GHz resonance frequencies - fast

- Sensitive to single atomic defects — difficult to control
- How to couple many qubits?

Currently - at a single qubit / single gate stage.



Superconducting Qbits -l



Superconducting Qbits

Al - T=1.12K Again — we need to operate qubits
Nb — T-= 9K at mK temperatures!

Some metals becoms superconducting at low T

Zero resistivity

— Induced current decay over very long times
(millions of years..)

BCS Theory
— Electrons form Cooper pairs (T+1)
— Energy-gap around the Fermi energy
— Can move through the metal without any

resistance
PY(x) = ns(x)e/ 9
Macroscopic wavefunction

— ng, — Cooper pair concentration
- ¢— global phase




Quantum LC-circuit

Stored energy in C Stored energy in L
b o 1 1 .
f, 1 H=--Q"+—¢>  [0.¢]=—ih
w=—
—— VIC
L C v
-0 i 1 1
Energy oscﬂlateg H=—p?+-m'w?x? [px]=—ih
between capacitor 2m 2
v and inductor The quantum version of the LC-circuit
e e behaves as an Harmonic Oscillator!
- ﬁ J—
(@) y V(x)

. L Equi-distant energy
i g separation between
W 2 13) energy levels

et | 12)

JWWV@ ; AN g AE = hw
& 1)

A s - |0)

v =9 X Not a two-level system!



Josephson Junction

() = /ng(xp)el(9(2)

Superconductor |nsulator

ij(t) = Iosin(o) § is the phase difference between
— t hds(t) dg the two superconductors.
t oy — WO =C T T
J Superconductor
_ ' di; 1 e di;
Y1) = g (xp)e (900 i _ E ds _ dj; o= j
] dt lo cos(6) dt dt Iycos(9) v(8) = hlycos(6) dt
di . .
v, =L Ordinary inductor

* A JJ-junction will act as a non-linear inductor
» L increases when the stored flux increases
« This will lead to anharmonicity

LC oscillator with different energies



Tunable Josephson Junction - SQUID

i(£) = I,sin(&) I, depends on how well the wave function overlaps
J 0 in the insulating region. Can be difficult to control.

Solution — connect two JJ and apply an magnetic field.
This can be shown to change I, — I,cos(kB).

A local B-field can be created by running a DC-current
through a conductor

We get a JJ-junction which can be tuned to adjust the
non-linear L!



Superconducting Qubit

This forms an isolated island for charges ‘Coper-pair box’

Nonlinear L
Sensitive to charge fluctuations & electrical noise
Solution — make C large!
, | Variation in charge on the box — small change in energy
BB ——— C Insensitive to charge noise — longer coherence time!

(b) Es/Ee =50
=T T T F 1

Transmon Qubit

T 1 —t——t—

C JJ Junction o
Transmission Line Shunted Plasma Oscillation Qubit

1)
10)



Superconducting Qubit Control

Vapp (t) = Acos(wg — @)

Capacitviely couple a RF signal to the transmon

(d) E;/Ee = 50.0
J I T T

2_ —

> | 1)
Ihwq 10)

1 [ 1
i e 2

 Frequency difference - w,; — w, rotation around z-axis
* Phase difference — rotation around x and y axis

« Full control over Qbit states!

* wq is in the GHz range — nS time / operation
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Superconducting Qubit Resonator

« We integrate the qubit in a section of a microwave
resonator

« The gbit will slightly shift the resonance frequency of the
resonator depending on the gbit state (|0) |1)).

* By measuring the resonance frequency of the resonator
w, we can perform a measurement on the gbit!

By applying RF pulses at the gbit resonance frequency w,
we can manipulate the gbit state




2-Qubit Gates

Coupling Q2

~ |
— X
ﬁ'ﬁ

|
AR

(a)

Qbit interaction is possible by coupling
different qubits together

This can be tunable through coupling via a DC
SQUID

CPHASE/CNOT qubit control can be
implemented



Superconducting Qubit Control

A Transmon
Current state-of-the-art
{ it ri et r, 1R, 1T @ - -
v [P [ ! T — Google Bristlecone — 72 qubits
H [$ _:_|:- e
S 5
° [TlerrerleT e o "-JH||';”|.'#_.*§'
47t l[ll, i I i |.|
H Pl g P 7 i "Ii
L T |r : .:. 9 @
C . ; 3

-

@ @

;

Table 2. Summary of the achieved success probabilities for the
implemented circuits, in percentages

(=] [=][=
i3

‘|;\ STy T fal
e Connectivity Star shaped Fully connected
Hardware Superconducting lon trap SU pe rconducti ng qu bits —
Success probability/ % Obs Rand  Sys Obs Rand Sys reasonable advanced
Margolus 14107 B2 75 90.1(2) 91 81 : :
Toffoli 52.6(8) 78 59  B5.0(2) 89 78 CerUItS
Bernstein-Vazirani  72.8(5) 80 74 85.1(1) 90 77 50-75% success rate

Hidden shift 35.1(6) 75 52 77.1(2) 86 57




Qubit lifetime (ns)

Superconducting Qubit Control

wh— T 7 T T Sources of Decoherance
T, 3-D cavities
e [T - 100000
10 | Ty . .
______________________________ 10000 « Emission of photon

10 |-

OED  flusonim « Critical current flucutations (/, in JJ)

10" | guantronium . S-Elnlrparﬁ:;dan- 1000 * Dle|eCtrIC |OSSGS

; 100 _ * Quasi-particle tunneling
10 ™= 3-D transmon g

, transmon 10 ; .
10° [ o « Charge noise

— 1 =
“H]] —— charge echo %
o i Decoherence Times in the 10-100 uS time range.

o
10
2000 2004 2008 2012

Year



Topological Qbits

» All gbits are sensitive to decoherence (nS-mS decoherence time)
» Local flucutations causes decoherance

« Can we build a qubit which is insensitive towards local pertubations?
— (Microsoft thinks so!)

» These are so called Majorana Fermions — “Topological protected states’

» Should appear in a “p-type” superconductor
» Cooper pairs with same spin
« Can form at the edge of a p-type superconducting wire

* p-type superconductors do not really
exist....



Majorana Zero Modes

B-field

Superconductor

/< Superconductor with epitaxial contact to nanowire

Nanowire (1D)with large spin-orbit interaction and
large g-factor (InSb, InAs).

« Under very precise conditions we can then form
Majorana Zeros Modes (Majorana Fermions) at the ends
to the nanowire. (Very low T, exact position of Fermi
energy, high quality SC-N interface, thin SC...)

« These are part of the same (quasi-)particle

* Highly non-local!
To perturb the particle state one needs to perturb both
ends of the wire — unlikely!

« The 1D nanowire will be spin polarized

» Superconductivity can be induced from
the standard superconductor

- The nanowire system approximates a ‘Topological protected states’

p-type superconductor! _ _
« Potentially very long coherence times!



Majorana Zero Modes

Ordinary S-N S-N tunneling
tunneling junction junction with a MZM
- A/2 The Maj tat o ™
'A S:gerconducung T EF A is firmaejgr;n;j ;ai) o EF

Need to apply A/2 in Vi
for a current to flow!

Zero Bias Peak
(Strong) indication that MZM have been formed

This is what has been experimentally
shown to far...




MZM qubit gates (?)

- S A S S S S A I WS E S W A S A S B S S A I A I EE EE A A S S S W EE WS S E A A S B S B S EE S E I E E EE EE a EE E EE EE S S

« The MZM adhers show ‘non-abelian’ statistics

» Interchange of two particles change the particle state in a non-trivial way
* i.e. not only a change of phase

» Apply network of wires and gates to move Majorana states around each
other.

* Could implement some qubit gates.

« This has never been demonstrated. It is not clear which is the best way to implement
Qubit or Gates...



MZM qubit gates

d b (e) Trijunction geometry

(a) Double-dot configuration (b) Single-dot configuration

(C) Single topological superconducion (d) Double topological superconduciorn

« Measurement could be done by ‘fusing’ two states
» [ts own anti-particle — will annihilate

* Nothing or creation of electron

 This has also never been demonstrated.



Quantum Computing Conclusions

Quantum Computers CAN do SOME things much better then a classical computer will be able to.
« Some IMPORTANT problems can get an EXPONENTIAL speed up

* Qubits are DIFFICULT to build

* Quantum Gates are even HARDER to build

« Plenty of very interesting and deep physics!

* Plenty of very interesting engineering challanges!

« There are alot of large companies (Google, Microsoft, Intel, IBM) working hard on this!
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