Lecture 4: III-V CMOS II

Contents:

III-V CMOS I: J Nah et al Nano Lett. 12 2012, p. 3592 "III- V Complementary ..."

GaSb pMOSFETs: M Xu et al IEEE Electron Dev. Lett. 32, 2011, p. 883 "GaSb Inversion-Mode ..."

III-V CMOS II: S Takagi et al IEEE IEDM Tech Digest. 2012, p. 505 "MOS interface and channel ... "

III-V CMOS III: J. Svensson et al Nano Letters 15, 2015, p. 7898 " III-V Nanowire Complimentary..."

III-V Nanowires I: M. Berg et al IEEE EDL, 37, 2015, p. 966" Electrical Characterization and Modeling ..."

III-V Nanowires II: K. Tomioka et al Nature "488, 2012, p. 2012 A III–V nanowire channel on silicon ..."

Nanoelectronics: III-V CMOS II

III-V Complementary Metal-Oxide-Semiconductor Electronics on Silicon Substrates

Junghyo Nah,^{†,‡,§,||,⊥} Hui Fang,^{†,‡,§,⊥} Chuan Wang,^{†,‡,§} Kuniharu Takei,^{†,‡,§} Min Hyung Lee,^{†,‡,§,#} E. Plis,^O Sanjay Krishna,^O and Ali Javey^{†,‡,§,*}

InAs/InGaSb Heterostructure:

Surface passivation

Non-doped ohmic contact formation

Provide strain to enhance mobility

Figure 1. III-V XOI CMOS. (a) Process schematic for the heterogeneous integration of InAs and InAs/InGaSb/InSb XOI on a Si/SiO₂ substrate. (b) Atomic force micrograph of transferred InAs and InAs/InGaSb/InAs NRs, located adjacently. (c) Schematic representation of a top-gated CMOS inverter with InAs (n-type) and InGaSb (p-type) active layers, having 10 nm of ZrO₂ as the top-gate dielectric.

Nanoelectronics: III-V CMOSII

Electrical Characteristics

Figure 2. Performance of *p*- and *n*-type XOI MOSFETs. (a) Optical image (center) of a fabricated III–V CMOS inverter and the corresponding SEM images of each channel region (left: InAs; right: InAs/InGaSb/InAs). (b) Output and (c) transfer characteristics of *p*- (left axis) and *n*- (right axis) MOSFETs.

Nanoelectronics: III-V CMOS II

InAs: 3 nanoribbons

Circuits

Figure 3. III–V CMOS inverter. (a) Transfer characteristics of a CMOS inverter, measured at different supply voltages (V_{DD}) . Inset shows the circuit diagram for the fabricated inverter. (b) Inverter gain (dV_{out}/dV_{in}) dependence on the input voltage.

Figure 4. III–V CMOS NAND logic gate. (a) Circuit schematic of a CMOS NAND gate. The circuit is designed by connecting two p-MOSFETs in parallel and two n-MOSFETs in series. (b) Output voltage V_{out} for four different combinations of input states "0 0", "0 1", "1 0", and "1 1". The output is in the "low-state" only if the inputs are "1 1". Note: Input voltages of +0.5 and -0.5 V are treated as logic "1" and "0", respectively. The supply voltage (V_{DD}) for the circuit is 0.5 V.

Nanoelectronics: III-V CMOS II

GaSb Inversion-Mode PMOSFETs With Atomic-Layer-Deposited Al₂O₃ as Gate Dielectric

Min Xu, Runsheng Wang, Student Member, IEEE, and Peide D. Ye, Senior Member, IEEE

GaSb:

Large hole mobility

Large density of states in valence band

Low density of defects close to valence band

Fig. 1. (a) Schematic cross section of an inversion-mode GaSb PMOSFET with ALD Al₂O₃ as gate dielectric. (b) DC output characteristic of a 0.75- μ m-gate-length device fabricated by Process I at $V_{\rm DS} = -3$ V and $V_{\rm GS} = -4$ V, showing the drain current potential at the current interface quality and dielectric strength. (c) DC transfer characteristics of the same device at $V_{\rm DS} = -3$ V.

Nanoelectronics: III-V CMOSII

Electrical Characteristics

Fig. 2. (a) Comparison of scaling behavior of drain currents versus gate length L_G on three different processed samples at $V_{\rm DS} = -3$ V and $V_{\rm GS} = V_T + (2/3) \cdot V_{\rm DS}$. (b) (Empty signs) Drain currents and (solid signs) source currents versus gate bias $V_{\rm GS}$ on three different processed samples at $V_{\rm DS} = -3$ V. (c) Effective mobility ($\mu_{\rm eff}$) versus inversion hole charge density ($N_{\rm inv}$). $\mu_{\rm eff}$ is extracted from split C-V method with all three processes. The Si(100) universal hole mobility is also included for comparison.

Scaling of gate length Important due to larger effective mass

Process dependence (ohmic contacts)

Mobilities above 200 cm²/Vs

Nanoelectronics: III-V CMOS II

Fig. 3. (a) C-V plots of Au/Ni/8-nm-Al₂O₃/p-GaSb at 300 K, 77 K, and 35 K. The excellent frequency-dispersion behavior at accumulation capacitance at all temperatures indicates true hole accumulation and a good interface near the valence band. The capacitor area is $3.14 \times 10^4 \ \mu m^2$ with a dielectric constant of ~ 8 for Al₂O₃. (b) Interface trap distribution near the conduction band is obtained from temperature-dependent conductance method on n-MOSCAPs at 300 K, 180 K, and 77 K, and that near the valence band is obtained from lowf-high-f C-V measurement on p-MOSCAPs at 35 K. The D_{it} distribution is similar to that on Ge without good surface passivation. The hole capture cross section in GaSb from 10^{-18} to $10^{-14}/\text{cm}^2$, depending on the energy level [20], is chosen to determine the D_{it} distribution. The dashed lines are guides to the eye. The square signs are obtained from conductance method performed at 300 K with the black signs for Process I, the red signs for Process II, and the blue signs for Process III. The black circle signs and down triangle signs are obtained from Process-I samples performed at 180 K and 77 K, respectively. Process I with a higher activation temperature of 650 $^{\circ}$ C results in a larger D_{it} since GaSb has a melting point of 712 °C and is easier to lose Sb at a higher processing temperature [10].

Interface quality

Comparably low density of defect levels close to valence band

High density of defect levels close to conduction band

Process dependence

Nanoelectronics: III-V CMOS II

MOS interface and channel engineering for high-mobility Ge/III-V CMOS

S. Takagi, R. Zhang, S.-H Kim, N. Taoka, M. Yokoyama, J.-K. Suh, R. Suzuki and M. Takenaka

The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan Tel/Fax: +81-3-5841-0419, Email: takagi@ee.t.u-tokyo.ac.jp

IEDM12-505

Fig.1: Several CMOS structures using Ge/III-V channels.

There are many
challenges:Scaling of Ge EOTIII-Vs on Sin- and p-type Integration

Nanoelectronics: III-V CMOSII

Fig. 7: I_d - V_d characteristics of Ge n- and pMOSFETs with HfO₂/Al₂O₃/GeO_x/Ge gate stacks having EOT of 0. 76 nm.

Ge Technology

Fig. 9: Hole mobility of Ge pMOSFETs with a variety of MOS interfaces as a function of N_s

Fig. 13: TEM of a ultrathin body InGaAs substrate on Si with Al₂O₃/ SiO₂ BOX, fabricated by wafer bonding

Fig. 14: Body thickness dependence of electron mobility in InGaAs/InAsbased MOSFETs. Enhancement of mobility 1. High Indium content 2. MOS interface buffer

Fig. 15: MOS channel engineering for enhancing mobility in ultrathin body InGaAs-based MOSFETs.

InGaAs on Si

Fig. 16: TEM of 55-nm-Lg ultrathin body MOSFETs with In_{0.3}Ga_{0.7}As(3nm)/InAs (3nm)/In_{0.3}Ga_{0.7}As(3nm) and Ni-InGaAs metal S/D. 7000 InAs w/ buffer (3/3

Fig. 19: N_s dependence of electron mobility at RT for InGaAs-based ultrathin body MOSFETs.

Ge and InGaAs Integration

Fig. 27: Schematic view and a photograph of fabricated CMOS structure of InGaAs-OI nMOSFET and Ge pMOSFET by using common Al₂O₃-based gate stack and Ni-based S/D

Fig. 28: Id - Vd characteristics of a Ge pMOSFET and a 20-nm-thick InGaAs-OI nMOSFET, fabricated on a same wafer.

mA/mm

An Integration Path for Gate-first UTB III-V-on-insulator MOSFETs with Silicon, using Direct Wafer Bonding and Donor Wafer Recycling

L. Czornomaz¹, N. Daix¹, D. Caimi¹, M, Sousa¹, R. Erni², M. D. Rossell², M. El-Kazzi¹, C. Rossel¹, C. Marchiori¹, E. Uccelli¹, M. Richter¹, H. Siegwart¹ and J. Fompeyrine¹

> ¹IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, SWITZERLAND ²Electron Microscopy Center, EMPA, Uberlandstrasse 129, 8600 Dübendorf, SWITZERLAND Contact: luk@zurich.ibm.com

ILD1 M1 Μ1 UTB III-V transfer on Si Wafers may be reused High-k / Metal gate / Gate cap deposition SiN up to 25 times Gate patterning w n4 InGaAs Sidewall insulation 10 nm InGaAs 5 nm InAlAs III-V cleaning and S/D regrowth (600°C) 30 nm BOX ILD1 deposition and patterning M1 contacts Si wafer Etching

Fig. 11: Process flow and schematic for gate-first implant-free UTB InGaAs/InAlAs MOSFETs on silicon.

Etch flow – Ref flow III-V-o-I III-V epi H implant Bonding Splitting + BOX Splitting flow Clean Recycle flow

Nanoelectronics: III-V CMOSII

Fig. 2: Process flow of III-V-o-I wafer fabrication fully compatible with VLSI standards using DWB, hydrogen implantation, thermal splitting, selective etching and InP donor wafer re-use.

EDM12-505

Materials Quality

High material quality

Fig. 12: (a) Cross-sectional STEM micrograph of gate-first implant-free UTB InGaAs/InAlAs MOSFETs on silicon, with raised S/D, 250 nm gate length and 500 nm gate pitch. (b) HRTEM cross-section of the UTB III-V / n+ regrowth interface showing ideal crystallinity. HRTEM cross-section of (c) the high-k / UTB III-V / BOX region and (d) the BOX-Si region showing sharp interfaces.

Nanoelectronics: III-V CMOS II

InGaAs MOSFETs

- High-k / Metal gate / Gate cap deposition
- Gate patterning
- Sidewall insulation
- III-V cleaning and S/D regrowth (600°C)
- ILD1 deposition and patterning
- M1 contacts

Fig. 11: Process flow and schematic for gate-first implant-free UTB InGaAs/InAlAs MOSFETs on silicon.

Nanoelectronics: III-V CMOS II

Fig. 14: Electron mobility vs inversion charge density on a long-channel MOSFET. This device exhibits a comparable mobility than previously reported devices with a similar process on bulk InP [4].

Very competitive transistor data

3D Monolithic Integration of InGaAs/Si CMOS Circuit

- Si FDSOI CMOS prepared by LETI until W-plugs
- 3D Monolithic integration of InGaAs FinFETs at IBM
- Proven no impact of InGaAs optimized process on Si FDSOI performance

3D Integration scheme demonstrated

3D Monolithic Integration of InGaAs/Si CM

Operational Si CMOS and InGaAs n-FETs demonstrated

- leti ^{c23tech}
- Design, fabrication and operation of 3D 6T-SRAM cells
- InGaAs RFFETs also fabricated on top layer → III-V RF + Si CMOS

V. Deshpande, et al., VLSI Technology, (2017)

1.0

InAs-GaSb Nanowire Growth

- Au seeds of different diameter patterned on Si/InAs wafers using EBL.
- InAs-GaSb nanowires grown using MOVPE.
- Gibbs-Thomson effect

Vapor pressure of Sb in Au increases with d_{Au} and when equal to that of gas phase, material transport to NW is inhibited.

- GaSb growth is suppressed for sufficiently small d_{Au}.

 γ_a : surface energy of Au seed Ω_a : molar volume of Au seed α : utilization factor of TMSb p_{TMSb} : precursor pressure x: Sb fraction in seed p_v^* : saturation vapor press

0∔ 20

25

30

35

Au diameter (nm)

40

InAs-GaSb Nanowire Growth

- Length of InAs and GaSb have opposite dependence on d_{Au} .
- **Diameter of GaSb larger than InAs since** ٠ Sb enhances group III solubility in Au.
- Distance between two types of wires down • to 200 nm.
 - 1500 60 pitch=500 nm InAs InAs . 55 GaSb GaSb length (nm) 2000 50 45. 40. 35-

-

p- and n-MOSFET Layout

- Tuning d_{Au} and pitch enables equal length of InAs and InAs/GaSb NWs.
 - Doping profiles enable n.i.d. channel and good contacts.

Device and Circuit Fabrication

- 1. High-k dep
- 2. InAs mesa (a)
- 3. Organic bottom spacer
- 4. W gate deposition
- 5. Gate length definition

- 5. Gate patterning (b)
- 6. Organic top spacer
- 7. Via holes (c)
- 8. Ni/Au drain deposition and patterning (d)

Sample A (1 nm doped GaSb shell):

InAs $I_{on} = 44 \ \mu A/\mu m \ (V_{dd} = 0.5 V), SS = 525 \ mV/dec$ GaSb $I_{on} = 7 \ \mu A/\mu m \ (V_{dd} = 0.5 V), SS = 300 \ mV/dec$

Sample B (shell removed by digital etch):

InAs $I_{on} = 0.1 \ \mu\text{A}/\mu\text{m} (V_{dd}=0.5\text{V}), SS = 180 \ \text{mV/dec}, I_{on}/I_{off} = 10^3$ GaSb $I_{on} = 0.1 \ \mu\text{A}/\mu\text{m} (V_{dd}=0.5\text{V}), SS = 180 \ \text{mV/dec}, I_{on}/I_{off} = 10^4$

Inverter

- Gain = 2 V/V (at V_{dd} = 0.5 V).
- Frequency response limited to 1 kHz due to parasitics.
- Can be improved by EBL patterned gate/drain electrodes and a selfaligned gate process.

-Two p-MOSFETs in parallell + two n-MOSFETs in series.

Why III-V Nanowires

Why III-V Nanowires?

- Advantageous transport
- Wrap-gate geometry
- Band gap engineering
- Small nanowire footprint
- \rightarrow high transconduc. and I_{on}
 - \rightarrow low output conduc. and DIBL
 - \rightarrow increased breakdown, reduced I_{off}
 - \rightarrow reduced defect propagation probability

Gate-Last Process

Nanowire growth

Drain contact formation **HSQ/W/TiN RIE Metal Etching** SiO₂ Spacer formation **Digital etching, HCI** ALD High-k Al₂O₃/HfO₂ 300/120°C W Gate formation **Organic** spacer **Device completion**

200 nm

Digital etching, HCl ALD High-*k* Al₂O₃/HfO₂ 300/120°C

W Gate formation Organic spacer Device completion

RIE Metal Etching

SiO₂ Spacer formation

ostrate 2

27

Gate-Last Process

Nanowire growth Drain contact formation HSQ/W/TiN **RIE Metal Etching** SiO₂ Spacer formation **Digital etching, HCI** ALD High-k Al₂O₃/HfO₂ 300/120°C W Gate formation **Organic** spacer **Device completion**

200 nm

Gate-Last Process

NANO ELECTRONICS GROUP

Nanowire growth Drain contact formation HSQ/W/TiN **RIE Metal Etching** SiO₂ Spacer formation **Digital etching, HCl** ALD High-k Al₂O₃/HfO₂ 300/120°C W Gate formation **Organic** spacer **Device completion**

Diameter 28 nm

Nanowire growth Drain contact formation HSQ/W/TiN **RIE Metal Etching** SiO₂ Spacer formation **Digital etching, HCI** ALD High-k Al₂O₃/HfO₂ 300/120°C W Gate formation **Organic** spacer 300 nr **Device completion**

Gate-Last Process

Nanowire growth Drain contact formation HSQ/W/TiN **RIE Metal Etching** SiO₂ Spacer formation **Digital etching, HCI** ALD High-k Al₂O₃/HfO₂ 300/120°C W Gate formation **Organic** spacer **Device completion**

M. Berg et al., IEDM 2015

DRC 2016

Best digital metric: I_{on}=140 μA/μm, SS= 90 mV/dec

RF metric:

g_m=1.1 mS/μm, μ=1200 cm²/Vs

L_a 190 nm, EOT 1.5 nm, Ø 28nm

M. Berg et al., IEEE EDL 2016

Use of g_m-f method

10 cylces AI_2O_3 40 cycles HfO_2 EOT 1.5 nm

M. Berg et al., IEEE EDL 2016

LETTER

A III–V nanowire channel on silicon for high–performance vertical transistors

(a) (b) Tungsten(Gate) (c) n+-InGaAs BCB Hfo.8Alo.2Ox SiO₂ n-Si(111) n-Si(111) n-Si(111) (e) (d) (f) Drain channel Gate BCB BCB n-Si(111) n-Si(111) n-Si(111) Source

Figure 3: Device fabrication processes: (a) InGaAs NW growth. (b) Atomic layer deposition of $Hf_{0.8}Al_{0.2}O_x$ and sputtering of W-gate metal. (c) Spin-coating of BCB polymer. (d) RIE of BCB, gate oxide and W metal. (e) Spin-coating of BCB and RIE etch back for electrical separation layer formation. (f) Drain and source metal evaporation.

Nanoelectronics: III-V Nanowires

Katsuhiro Tomioka^{1,2}, Masatoshi Yoshimura¹ & Takashi Fukui¹

Device Performance

Gate length 200 nm

Nanowire diameter 60 nm

10 nanowires in the array

Transconductance of 280 µS/µm at Vd=1V

SS 98 mV/dec.

Nanoelectronics: III-V Nanowires

Nanoelectronics: III-V Nanowires