Graphene electronics

Johannes Svensson

Nanoelectronics FFF160

Outline

- Graphene production

- Mechanical exfoliation
- Epitaxial growth
- Chemical vapor deposition
- Transport characteristics
- High frequency performance
- Inducing a band gap
 - Nanoribbon
 - Bilayer graphene
 - Chemical modification
- Performance comparison (graphene / CNTs)
- Other electronic CNT/graphene devices

Outline

- Graphene production
 - Mechanical exfoliation
 - Epitaxial growth
 - Chemical vapor deposition
- Transport characteristics
- High frequency performance
- Inducing a band gap
 - Nanoribbon
 - Bilayer graphene
 - Chemical modification
- Performance comparison (graphene / CNTs)
- Other electronic CNT/graphene devices

Mechanical exfoliation

- Rub graphite on substrate
- Use adhesive tape to peel off layers
- $100x100 \ \mu m$ flakes -> mainly for research
- Visible in optical microscope

Observing graphene

- Optical microscope
- Atomic force microscopy
- TEM
- SEM
- Raman spectroscopy

Epitaxial growth on SiC

-Heat to 1550 °C to remove Si which will expose a graphene layer

-Need to remove "coupling" to substrate by e.g. hydrogen treatment

Chemical vapor deposition

Kim et al. Nature 457, 706-710 (2009)

Chemical vapor deposition - result

- Mix of single and multilayered - μ_e =3,700 cm²/Vs after transfer

Large scale CVD production

- CVD on Cu foil
- 30 inch multilayer flake
- $30 \Omega/\Box$ at 90% transparency
- Better than ITO

Bae et al. Nature Nanotech. 5, 574–578 (2010)

Outline

- Graphene production
 - Mechanical exfoliation
 - Epitaxial growth
 - Chemical vapor deposition
- Transport characteristics
- High frequency performance
- Inducing a band gap
 - Nanoribbon
 - Bilayer graphene
 - Chemical modification
- Performance comparison (graphene / CNTs)
- Other electronic CNT/graphene devices

Transfer characteristics

- DOS decreases towards "Dirac" point.
- Finite conductance due to corrugations, charge impurities, disorder etc.
- No band gap -> poor on/off ratio
- Logic requires on/off > 3000 i.e. can not make digital circuits.

Output characteristics

- Low V_{DS}: only holes in channel
- Intermediate V_{DS}: channel pinched off at drain.
- High V_{DS}: electrons close to drain. e/h crossover point moves into channel with increasing V_{DS}

Drain-source voltage

High mobility

- Exfoliated graphene
- Unsuspended flakes: μ_e =2 000 30 000 cm²/Vs (substrate phonons)
- Supended and annealed flakes: $\mu_e = 230\ 000\ cm^2/Vs$
- Scattering due to impurities and edges

Bolotin et al. PRL 101, 096802 (2008)

Outline

- Graphene production
 - Mechanical exfoliation
 - Epitaxial growth
 - Chemical vapor deposition
- Transport characteristics

- High frequency performance

- Inducing a band gap
 - Nanoribbon
 - Bilayer graphene
 - Chemical modification
- Performance comparison (graphene / CNTs)
- Other electronic CNT/graphene devices

High frequency device

- SiC grown graphene
- $f_T = 100 \text{ GHz for } L_g = 240 \text{ nm}$
- Large output conductance -> low f_{max}

Lin et al. Science, 327, 662 (2010)

Graphene - nanowire device

- Dielectric lowers mobility
- Gate underlap: high source/drain access resistance reduce g_m
- Gate overlap: increased paracitic capacitances
- Silicide nanowires with Al₂O₃ shell on exfoliated graphene
- Self-aligned Pt contacts

Graphene - nanowire device performance

- g_m improves after Pt
- $f_T = 300 \text{ GHz for } L_g = 144 \text{ nm}$
- Better than Si MOSFETs, similar to InP and GaAs HEMTs

Outline

- Graphene production
 - Mechanical exfoliation
 - Epitaxial growth
 - Chemical vapor deposition
- Transport characteristics
- High frequency performance
- Inducing a band gap
 - Nanoribbon
 - Bilayer graphene
 - Chemical modification
- Performance comparison (graphene / CNTs)
- Other electronic CNT/graphene devices

Confinement of electron wavefunctions

- Make narrow ribbon to introduce band gap
- Fixed boundary conditions instead of periodic (CNT)
- Wavevectors $k_{\perp} = n\pi/C$ with n=1,2,3... allowed
- Need width = CNT circumference / 2 to get same band gap

Chemical exfoliation

- Intercalate sulfuric acid and nitric acid in graphite
- Heat to 1000°C -> few-layered graphene sheets.
- Sonication with polymer -> graphene nanoribbons

Etching

- E-beam lithography and oxygen plasma etching
- Not narrow enough
- Diffcult to control edges

Unzipping a CNT

Use oxygen plasma to remove layers of CNTs
Very delicate process -> no mass production

Band gap vs GNR width

- Need 1 nm wide ribbons to get E_g=1 eV
- Gap depends on edge structure

Schwierz, Nature Nanotech. 5, 487 (2010)

Mobility degradation

- Narrower -> Larger E_g -> higher m^{*} -> lower mobility (as for CNTs)
- Graphene ribbons are worse than III-V materials

Bilayer graphene

- Perpendicular electric field breaks symmetry in bilayer graphene.
- Band gap proportional to E-field.

 $k(Å^{-1})$

Oostinga et al. Nature Mat. 7, 151 - 157 (2007)

Double gated bilayer device

- Need to apply 120 V to get on/off = 100
- Difficult to use for integrated circuits
- Mobility is probably degraded

Xia et al. Nano Lett. 10, 715–718 (2010)

Graphane

- Heat graphene in hydrogen -> graphane
- $sp^2 \rightarrow sp^3 \rightarrow remove conducting \pi$ -bonds and opening an energy gap
- Lose the linear band dispersion of graphene

Elias et al. Science, 323, 610-613 (2009)

Outline

- Graphene production
 - Mechanical exfoliation
 - Epitaxial growth
 - Chemical vapor deposition
- Transport characteristics
- High frequency performance
- Inducing a band gap
 - Nanoribbon
 - Bilayer graphene
 - Chemical modification

- Performance comparison (graphene / CNTs)

- Other electronic CNT/graphene devices

Comparing CNT and graphene FETs

Graphene FETs	Carbon nanotubes FETs
No band gap gives poor on/off ratio, not for logic only RF	Sufficient band gap for logic
Difficult to control edges which gives mobility degradation	No dangling bonds
Large area production possible	Need parallel CNTs to obtain high on-current and g _m
Only one type of device	No control of metallic / semiconducting type

Benchmark comparisons

- From DC measurements: gate delay, energy delay product, subthreshold slope
- Large spread in results for CNTs
- Gate delay (CV/I) may be quite incorrect

CNT density and purity

Franklin, Nature 498, 443 (2013)

Graphene gate length scaling

Comparing high frequency performance

- III-V materials are still better
- Need to reduce L_g of CNT/graphene FET
- Need good saturation (low g_d) to get high f_{max}

Why carbon electronics?

- + High mobility
- + High carrier velocity
- + High current density
- + Good electrostatics
- + Compatible with high-k dielectrics
- + Same electron/hole band structure
- + "cheap" starting materials

Why not?

- Uncontrolled band gap
- Poor position control
- Unstable doping
- Difficult to mass produce

Very active research

- Rapidly increasing # of publications
- Graphene > CNTs in 2011

Outline

- Graphene production
 - Mechanical exfoliation
 - Epitaxial growth
 - Chemical vapor deposition
- Transport characteristics
- High frequency performance
- Inducing a band gap
 - Nanoribbon
 - Bilayer graphene
 - Chemical modification
- Performance comparison (graphene / CNTs)
- Other electronic CNT / graphene devices

Other applications

- supercapacitor electrodes
- memories
- **LEDs**
- photodiodes
- solar cells
- interconnects
- transparent electrodes
- **NEMS for mass sensing**
- **DNA** sequencing
- quantum computing
- spintronics
- **Conductive materials**

Space elevator

