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Inverters with strained S1 nanowire
complementary tunnel field-effect transistors

L. Knoll. Q. T. Zhao. Member. IEEE, A. Nichau. S.Trellenkamp, S. Richter. A. Schéfer. D. Esseni, L.
Selmi. K. K. Bourdelle. S. Mantl. Member. IEEE

135° Bion implant V& 45° As ion implant

Implantation used to form
shallow junctions with
low temperature annealing (450 C)

NiSi, leads to reduce resistance
(silicidation of thin Ni layer 3 nm)

Inverter configuration

Fig.1 (a) Schematic of sS1 NW TFET mverter fabricated using tilted B~ and

As” ion implantations into epitaxial NiSiz $/D contacts. Highly doped n+ and

p+ pockets at the silicide edges are created with TIS after a low temperature

anneal (b). forming an n-TFET on the left and a p-TFET on the nght in

Fig.1(a). (c) SEM image of the NW array TFET: (d) XTEM image of single

551 nanowire with gate stack. (e) XTEM cross section along the NW, 1
N d indicating a perfectly aligned NiSi; contact to the channel.



Device Performance
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Fig.2. (a) Ip-Vps characteristics of NW array C-TFETs showing high on-
currents; (b) The corresponding In-Ves characteristics of sS1 NW array C-
TFETs, providing a minimum SS of 30 mV/dec for the n-FET(c). and of
90 mV/dec for the p-TFETs at 300 K. The Ip-range with SS < 60 mV/dec
extends over one order of magmtude of Ip (c). The low temperature (T)
measurements demonstrate a BTBT dominated transport mechanism (d) with
| an almost constant SS in the mnvestigated temperature range. 2



Inverter Performance
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Fig. 3. VIC (a) and voltage gamn (b) for NW TFET mmverters. functioning at
Vop=0.2V. (c) Expenimental and calculated VTC for NW TFET at Vpo=1V.
The calculation confirms that the nominal value of the high Vgt recovers to
Vop=1V and the low Vgur approaches to 0V as the ambipolarities of both
the n- and p-type transistors are removed. (d) Transient response of NW C-
TFET inverter at Vpp= 1.0 V, showing clear voltage overshoots.
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Good VTC with high gain and
gain also at V4,=0.2 V!

Reduction in voltage swing
due to ambipolar conduction
(confirmed by modeling)

Inverter rise time ~3 ns
Inverter fall time ~2 ns
(10-90 %)

Propagation delay ~ 1.9 ns

Overshoot due to large
Miller capacitance



Fabrication and Characterization of an
InAlAs/InGaAs/InP Ring Oscillator Using
Integrated Enhancement- and Depletion-Mode
High-Electron Mobility Transistors

A Mahajan, G. Cueva, M. Arafa, P. Fay, and I Adesida

8 nm ' InGaAs cap
1.5 mwm AlAs
elch stop
Use of two etch stop layers to
12 nm i-InAlAs Enhancement Schouky Layer .
_________________ b e - fabricate both E- and D-Mode
3.5 nm i-InAlAs Spacer tra n S i Sto r’S
20 nm i-InfGoAs channel
200 nm i-InAlAs bufter
5.1 InP* Substrae
Fig. 1. Cross section diagram of MBE-grown layver stmucture used in thus
work.

Nanoelectronics: High-Speed Circuits
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Fig. 8 Spectrum of output of 23 stage 0.25 pm gate-length Fig. 9. (a) fpa. (b) Pn and (c) PDP as a function of supply
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Quantum cellular automata
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1
P=+1 P=-1
Figure 1, The quantum cgll consisting of five quantum
dots which are occupied by two electrons. The mutual

Coulombic repulsion between the electrons results in
bistability between the P= +1 and P = —1 states.

Nanoelectronics: QCA

Pure Quantum Mechanics:
Quantum dots with diameter 10 nm

Nearest neighbor 20 nm
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Figure 2. The cell-cell response function. The
polarization of the right cell is fixed and the induced
polarization in the left cell is calculated, (a) The calculated
polarization of cell 1 as a function of the polarization of
cell 2. Note that the range of P, shown is only from —0.1
to +0.1. This is because the transition in the induced
polarization is so abrupt. (A} The first four eigen-energies
of cell 1. The polarization of the lowest two are shown

in (&).

Nanoelectronics: QCA

Switching behaviour
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Figure 3, The cell—cell response function for various
values of the dot-to-dot coupling energy (f in equation
(1)). The induced cell polarization P, is plotted as a
function of the neighboring cell polarization F,. The
results are shown for values of the coupling eneray,

t = —0.2 (full curve), —0.3 (dotted curve), —0.6 (dashed
curve), and —0.7 (dot-dashed curva) meV. Note that the
response is shown only for 2, in the range [—0.1, +0.1].



Edge driven computing

T
Inputs _ OQutputs
7
QCA
a}

L ] T
Set Sense
a—— A——

Figure 4. The new paradigm for computing with
quantum cellular automata (acas}. The input to the acais
provided at an edge by setting the polarization state of the
edae cells (edge-driven computation). The qca is allowed
to dissipatively move to its new ground-siate
configuration and the output is sensed at the other edge
(computing with the ground state). The 'set’ and ‘sense”
lines are shown schematically.
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Nanoelectronics: QCA

Transmission lines
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Figure 5. aca wires: (a) the basic wire; (b} a corner in a
wire; (¢) fan-out of one signal into two channels. In each
case the darker (left-hand) cell has a fixed polarization
which constitutes the input. Note that these figures are
not simply schematic, but are a plot of the results of a
self-consistent many-body calculation of the ground state
for the cellular array. The diameter of each circle is
proportianal to the calculated charge density at each site.




Inverter

Circuits
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Figure 6. An i '
OR g ates au?;r:;gt un.An inverter constructed from a quantum cell
a) b)
1% 1 U% AND gates
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Figure 7. An OR gate. The cells in darker squares are c)

fixed to the input states. The cell in the dashed square is
biased slightly toward the "1 state.
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Figure 8. An AND gate. The cells in darker squares are
fixed to the input states. The cell in the dashed square is
biased slightly toward the "0’ state.

Nanoelectronics: QCA d



Critical Issues and Benefits

Issues:

Uniform cell occupancy

Dot size control

Temperature

Nanoelectronics: QCA

Benefits:

No interconnects

High density

Low power

Ultra-fast computing

10



