

### Integration of III-V semiconductors with Si

**MATTIAS BORG** 



### On the agenda



#### Part 1:

- Why go for III-Vs?
- Challenges of integration
- Integration techniques
  - Buffer layer epitaxy
  - ELO

#### Part 2:

- ART
- Nanowire epitaxy
- TASE
- RME

### Si integrated circuits

- Si electronics for 50+ years!
  - $\rightarrow$  Established, inexpensive, versatile
- Billions of transistors/chip (all "identical"!)
- Si CMOS  $\rightarrow$  Greatest engineering feat of mankind













#### End of the Si roadmap

Power leakage is the problem •

10000

1000

100

10

Processor clock speed (MHz)

Leakage through gate dielectric, I<sub>GD</sub> (dynamic) —

2003

2000

1990

2010

2020

- Leakage in off-state, I<sub>DS,off</sub> (static) —
- Core clock speed increase stalls



1970

1980



n+



 $W, L_G, t_{ox} \times \frac{1}{\kappa}$ 

#### **III-V** semiconductors



Larger band gap





### So why III-V's?



- Can extend application space
- But for feasibility (\$\$) needs integration with Si



**Optoelectronics** 

- LEDs
- Lasers
- IR Photodetectors



#### **Communication and Power**

- mmWave devices (> 60 GHz)
- RF Power amplifiers
- Power switches



#### Quantum computing

- Majorana fermions
- Topological interfaces

#### **Challenges of integration - Lattice-mismatch**





#### How thick can you grow?

- *h* = *layer thickness*
- $E_{strain} \propto h$
- Not stable when  $E_{strain}$  > critical thickness,  $h_c$

$$h_{c} \simeq \left(\frac{1-\nu}{1+\nu}\right) \left(\frac{1}{16\pi\sqrt{2}}\right) \left(\frac{b^{2}}{a(x)}\right) \left(\frac{1}{\epsilon_{0}^{2}}\right) \ln\left(\frac{h_{c}}{b}\right)$$

Matthews-Blakeslee model

v = Poisson ratio  $\epsilon_0$  = lattice mismatch b = slip distance (Burgers vector) a = bulk lattice constant of film





#### **Strain relaxation**





#### **Two types of line dislocations**

- Burgers vector direction tells type of defect:
- Edge dislocations
  - Extra/missing row of atoms parallel to the dislocation
  - Burgers vector perpendicular to line
- Screw dislocation
  - Atomic planes are screwed around the dislocation
  - Burgers vector parallel to line







#### Example – InAs on Si

1.

- How large is the lattice mismatch (f)?
- 2. What is the critical thickness?
- 3. What growth mode to expect?

#### **Answers**:

- 1. 11.5%
- 2. Basically zero
- 3. Island growth

#### $\rightarrow$ InAs integration on Si seems quite hopeless







#### **Challenges of integration - Crystal structure**





**Diamond structure** 

#### **Two interlaced face-centered cubic (fcc) lattices** The second lattice is translated a/4\*(1,1,1)



Zinc-blende structure

Same structure as diamond but one fcc lattice has group III and the second one has group V species

### **Anti-phase boundary defects**



• Very detrimental defect due to highly polarised defect states.



Michaud, Portail, Alquier "Advanced Silicon Carbide Devices and Processing", Chapter 2 (2015)



#### **Integration strategies**





Typical Temperature: 500-800°C



#### <u>Goal:</u>

- Maximize quality
  - Minimize cost (high throughput)
- Minimize thermal budget

#### Wafer bonding





### **Epitaxial integration methods**





#### Mattias Borg / FFF160 – Nanoelectronics (2018)

# Buffer layer epitaxy

- Idea: Reduction of defects in top layer by containing defects in a thick "buffer" layer.
- Why? Dislocations can terminate when merging

InP

Si





### Strategies to limit defect propagation



#### Off-cut substrates

Maximizes nucleation density



Fischer et al. JAP 1986



Grassman et al. TED 2010

#### **Superlattices**



Chen et al. IEEE Electron Lett. 2004

#### **Example of buffer-integrated device**





### Two-step buffer

• Nucleation step: low temperature, high growth rate

- $\rightarrow$  Creates dense network of dislocated islands
- Buffer step: standard growth conditions to merge film





(d)

#### **Multiple nucleation steps**



Ghalamestani et al. JCG 2011



### **Epitaxial Lateral Over-Growth (ELOG)**



- Growth through small trench
- Filters out defects
- Layer on top of mask is highquality
- Still high defect density above openings



Wang et al. 2011 ICO Int Conf Information Phot.





Si

InP Seed Layer

### **Problem of merging growth fronts**









- Faceting can cause voids
- Crystal misalignment can cause defects





**Break** 





### **Epitaxial integration methods**





Mattias Borg / FFF160 - Nanoel Buffer layer epitaxy

### Based on ELO concept but no merging High aspect ratio windows (trenches) to catch all defects

• Progress lead by IMEC, Sematech

Idea:

•

• Completely compatible with Si CMOS fin processes (replacement fin)











# Aspect ratio trapping (ART)

### **Defect "trapping" in ART**

- Defects (dislocation threading, twins, stacking faults) occur on ٠ (111) planes
- Defects across the trenches terminate on oxide •
- Defects along the trench may not be trapped •
- Two-step growth improves this  $\rightarrow$  Maximize nucleation density to prevent threading















Si

InP

Si

InP

W=30nm

Waldron et al. SSE 2016 (IMEC)

#### Latest status

- V-groove at bottom deemed crucial
- IMEC:

(a)

(c)

- Two-step growth to create a dense twin network
- Mg Counterdoping to increase resistivity in InP

(b)

50 nm

InP

Si

[001]



Orzali et al. JAP 2015 (SEMATECH)



• I<sub>on</sub> = 200 µA/µm

• g<sub>m</sub> = 1.3 mS/µm

 $(V_{DS}=0.5V)$ 

 $(V_{DS}=0.5V)$ 

• μ<sub>FE</sub> ~ 1200 cm²/Vs

#### **Nanowire epitaxy - VLS**



- VLS Vapour Liquid Solid
- Selective growth seeded by liquid particle
  - Extrinsic particle (Au, Ag, Al, Sn, ...)
  - − Self-assisted (Ga  $\rightarrow$  GaAs, In  $\rightarrow$  InAs)
- Gives nanowire structures along [111]B (usually)
- Strain relaxation by
  - elastic relaxation at small dimensions (some claim)
  - Point contact to Si → Contained misfit dislocation network at heterojunction (observed)





Plissard et al. Nanotechn. 2011

#### **Nanowire epitaxy – Selective area**



- No seed → abrupt junctions, CMOS compatible
- Twin defects are necessary!! → Prismatic crystal shape
  - (111)B top and {110} side facets
- Aspect rato given by growth rate anisotropy
- Excellent devices demonstrated by Hokkaido group





## Limitations of nanowire epitaxy



NANO

**E**LECTRONICS

GROUP

#### Latest status of vertical nanowire devices

- Self-aligned S/D  $\rightarrow$  lower  $\rm R_{on}$
- $I_{on} = 407 \ \mu A/\mu m \ (V_{DS}=0.5V)$
- $g_m = 2.4 \text{ mS/}\mu\text{m} (V_{DS}=0.5\text{V})$
- 45% ballistic transport (45 nm)
- SS = 85 mV/dec





NANO

**ELECTRONICS** 

GROUP

#### **Template-assisted selective epitaxy (TASE)**





Mattias Borg / FFF160 – Nanoelectronics (2018)

#### **Template-assisted selective epitaxy (TASE)**





Vertical process



Borg et al. Nano Letters 2014

Mattias Borg / FFF160 – Nanoelectronics (2018)



### Material quality with TASE

- Misfit dislocations contained at heterojunction
- Twin plane defects often present in arsenide materials (InAs, GaAs,..)
  - $\rightarrow$  Increased carrier scattering
  - GaSb has been made twin-free
- The surface is intrinsically protected from oxidation
  - $\rightarrow$  Less surface scattering/recombination









#### **Transport properties in TASE**

- High carrier mobility (at 300 K)
  - 23 nm InAs:  $\mu_n = 5400 \text{ cm}^2/\text{Vs}$
  - 20 nm GaSb:  $\mu_p = 760 \text{ cm}^2/\text{Vs}$
- Ballistic transport in InAs 1D nanowires < 50 K
  - Conductance quantization observed
  - Mean free path =
    - 470 nm @ 30 K, 1  $\mu m$  @ 4 K
- Ballistic transport maintained over up to four cross junctions







Gooth et al. Nano Lett. 2017



#### **Cointegration of multiple materials**

- Sequential repetition of TASE allows for multiple channel materials densely spaced.
  - → III-V Complementary logic
- GaSb and InAs cointegrated
- First material remains unchanged





Borg et al. ACS Nano 2017

NANO

**E**LECTRONICS

GROUP



38





#### finFETs for III-V CMOS



#### **Rapid Melt Epitaxy**

 Single crystalline heteroepitaxy is achieved by melting and recrystallizing nanostructured III-V (or Ge)

Solid 
Liquid
Solid
Liquid
Solid





### **Rapid Melt Epitaxy**

- Small contact point between Si and III-V /Ge.
  - Heterogeneous nucleation at this interface
  - Defects are confined near this interface
- Very high crystal quality ( $\mu_h(Ge) \sim 1000 \text{ cm}^2/\text{Vs}$ )
- Large areas possible (compared to TASE)





NANO

**E**LECTRONICS

#### Mattias Borg / FFF160 – Nanoelectronics (2018)

41

#### **Importance of nucleation rates**

- Onset of heterogeneous and homogeneous nucleation at different T  $\rightarrow$  Process window
  - Limits the maximum size of the single crystal
  - Too slow cooling rate  $\rightarrow$  poly-crystal
    - Example: Square vs hexagonal mesh





# ightarrow dissolution of the Si into the liquid

٠



![](_page_41_Figure_2.jpeg)

### Si interdiffusion problem

Solid Si in connection with a Ge or III-V liquid

![](_page_41_Picture_4.jpeg)

### **Problem of ternaries in RME**

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

- Thermodynamics favors compositional gradient
- Higher cooling rates → homogeneous composition

![](_page_42_Figure_5.jpeg)

Littlejohns Sci. Rep. 2014

### **Summary and outlook**

![](_page_43_Picture_1.jpeg)

Integrated III-V Comm/Optical/Quantum technology

Si CMOS technology

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_43_Picture_6.jpeg)