High Speed Electronics 2019 - Exercise 5 Solutions

1. a) To determine S_{11} (Input reflection co-efficient)

$$
\begin{gathered}
Z_{\text {in }}=R+Z_{0} \\
S_{11}=\Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{0}}{Z_{\text {in }}+Z_{0}}=\frac{R}{R+2 Z_{0}}
\end{gathered}
$$

To determine S_{22} (Output reflection co-efficient)

To determine S_{21} (Transverse gain)

$$
\begin{gathered}
V_{2}=V_{s} \frac{Z_{0}}{R+2 Z_{0}} \\
S_{21}=\frac{2 V_{2}}{V_{s}}=\frac{2 Z_{0}}{R+2 Z_{0}}
\end{gathered}
$$

To determine S_{12} (Reverse gain)

$$
\begin{gathered}
V_{1}=V_{s} \frac{Z_{0}}{R+2 Z_{0}} \\
S_{12}=\frac{2 V_{1}}{V_{s}}=\frac{2 Z_{0}}{R+2 Z_{0}}
\end{gathered}
$$

b) To determine S_{11} (Input reflection co-efficient)

To determine S_{22} (Output reflection co-efficient)

To determine S_{21} (Transverse gain)

$$
\begin{gathered}
V_{2}=V_{i n} \frac{Z_{0}}{R_{1}+Z_{0}} \\
V_{i n}=V_{s} \frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{0}} \\
S_{21}=\frac{2 V_{2}}{V_{s}}=\frac{2 Z_{\text {in }} Z_{0}}{\left(R_{1}+Z_{0}\right)\left(Z_{\text {in }}+Z_{0}\right)}
\end{gathered}
$$

To determine S_{12} (Reverse gain)

$$
\begin{gathered}
V_{1}=V_{2} \frac{Z_{0} \| R_{2}}{R_{1}+\left(R_{2} \| Z_{0}\right)} \\
V_{2}=V_{s} \frac{Z_{\text {out }}}{Z_{\text {out }}+Z_{0}} \\
S_{12}=\frac{2 V_{1}}{V_{s}}=\frac{2 Z_{\text {out }}\left(Z_{0} \| R_{2}\right)}{\left(R_{1}+\left(R_{2} \| Z_{0}\right)\right)\left(Z_{\text {out }}+Z_{0}\right)}
\end{gathered}
$$

2. To determine S_{11}

$$
\begin{gathered}
S_{11}=\Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{0}}{Z_{i n}+Z_{0}} \\
Z_{i n}=\frac{V_{s}}{i_{i n}} \\
i_{2}=\left(V_{1}-V_{2}\right) j \omega C_{g d}=g_{m} V_{1}+g_{d} V_{2}+\frac{V_{2}}{Z_{0}}
\end{gathered}
$$

$$
\begin{gathered}
V_{2}=\frac{V_{1}\left(j \omega C_{g d}-g_{m}\right)}{j \omega C_{g d}+g_{d}+\frac{1}{Z_{o}}} \\
i_{i n}=\left(V_{1}-V_{2}\right) j \omega C_{g d}+\frac{V_{1}}{\left(R+\frac{1}{j \omega C_{g s}}\right)}
\end{gathered}
$$

Substituting for V_{2} in the $i_{i n}$ expression above gives

$$
Z_{\text {in }}=\frac{V_{1}}{i_{\text {in }}}
$$

From which S_{11} can be calculated.
To determine S_{22}

$S_{22}=\Gamma_{\text {out }}=\frac{Z_{\text {out }}-Z_{0}}{Z_{\text {out }}+Z_{0}}$, where $Z_{\text {out }}=\frac{V_{s}}{i_{s}}$
Writing KCL at node V1

$$
\begin{gathered}
i_{2}=\left(V_{2}-V_{1}\right) j \omega C_{g d}=\frac{V_{1}}{\left(R+\frac{1}{j \omega C_{g s}}\right)}+\frac{V_{1}}{Z_{0}} \\
V_{1}=\frac{V_{2} j \omega C_{g d}}{\left(R+\frac{1}{j \omega C_{g s}}+\frac{1}{Z_{0}}+j \omega C_{g d}\right)}
\end{gathered}
$$

Similarly, KCL at node V2

$$
i_{s}=\left(V_{2}-V_{1}\right) j \omega C_{g d}+V_{1} g_{m}+V_{2} g_{d}
$$

Substituting for V_{1} in the i_{s} expression above gives $Z_{\text {out }}=\frac{V_{s}}{i_{s}}$ from which S_{22} can be computed.

To determine S_{21}

Now we try to write V2,Vs can be calculated from KCL at nodes V1 and V2.

$$
i_{2}=\left(V_{1}-V_{2}\right) j \omega C_{g d}=\frac{V_{2}}{Z_{0}}+V_{1} g_{m}+V_{2} g_{d}
$$

Which gives,

$$
V_{1}=\frac{V_{2}\left(j \omega C_{g d}+g_{d}+\frac{1}{Z_{0}}\right)}{\left(j \omega C_{g d}-g_{m}\right)}
$$

Also,

$$
i_{s}=\frac{\left(V_{s}-V_{1}\right)}{Z_{0}}=\frac{V_{1}}{\left(R+\frac{1}{j \omega C_{g s}}\right)}+\left(V_{1}-V_{2}\right) j \omega C_{g d}
$$

Which results to,

$$
\frac{V_{s}}{Z_{0}}=V_{1}\left(\frac{1}{Z_{0}}+\frac{1}{\left(R+\frac{1}{j \omega C_{g s}}\right)}+j \omega C_{g d}\right)-V_{2}\left(j \omega C_{g d}\right)
$$

Solving the above equations and rearrange them to get $S_{21}=\frac{2 V_{2}}{V_{s}}$

To determine S_{12}

$$
S_{12}=\frac{2 V_{1}}{V_{s}}
$$

As usual, writing eh KCL equations at V1, V2 nodes

$$
\begin{gathered}
i_{2}=\frac{V_{1}}{Z_{0}}+\frac{V_{1}}{\left(R+\frac{1}{j \omega C_{g S}}\right)}=\left(V_{2}-V_{1}\right) j \omega C_{g d} \\
V_{2}=\frac{V_{1}\left(j \omega C_{g d}+\frac{1}{Z_{0}}+\frac{1}{\left(R+\frac{1}{j \omega C_{g S}}\right)}\right)}{j \omega C_{g d}}
\end{gathered}
$$

Also,

$$
\begin{gathered}
i_{s}=\frac{V_{s}-V_{2}}{Z_{0}}=\left(V_{2}-V_{1}\right) j \omega C_{g d}+V_{1} g_{m}+V_{2} g_{d} \\
\frac{V_{s}}{Z_{0}}=V_{1}\left(g_{m}-j \omega C_{g d}\right)+V_{2}\left(g_{d}+j \omega C_{g d}+\frac{1}{Z_{0}}\right)
\end{gathered}
$$

Substitute for V 2 in the above expression and rearrange to get

$$
S_{12}=\frac{2 V_{1}}{V_{s}}
$$

3. Since direct numerical calculations of S parameters is very tedious, let us compute the numerical y-parameters and convert them to S-parameters.

General hybrid π-model

Comparing the above two models, the y-parameters cab be extracted at

$$
\begin{gathered}
\omega=2 \pi f=2 \pi * 50 * 10^{9}=314 * 10^{9} \\
Y_{11}=\left(R+\frac{1}{j \omega C_{g S}}\right)^{-1}+j \omega C_{g d}=\frac{j \omega C_{g s}}{1+j \omega R C_{g s}}+j \omega C_{g d} \\
=\frac{\omega^{2} R C_{g s}^{2}}{1+\omega^{2} R^{2} C_{g s}^{2}}+j \omega C_{g d}+\frac{j \omega C_{g s}}{1+\omega^{2} R^{2} C_{g s}^{2}} \\
Y_{11}=3.4 * 10^{-4}+j 1.5 * 10^{-3} S \\
Y_{12}=-j \omega C_{g d}=-j 1.57 * 10^{-3} S \\
Y_{21}=g_{m}-j \omega C_{g d}=20 * 10^{-3}-j 1.57 * 10^{-3} S \\
Y_{22}=g_{d}+j \omega C_{g d}=5 * 10^{-3}+j 1.57 * 10^{-3} S
\end{gathered}
$$

Using MATLAB y2s function, the parameters were converted and the absolute values of the S-parameters were obtained.

$$
\begin{aligned}
S_{11} & =-0.8127-j 0.9502 ;\left|S_{11}\right|=1.25 \\
S_{12} & =0.1763-j 0.9397 ;\left|S_{12}\right|=0.9561 \\
S_{21} & =0.1674-j 0.9313 ;\left|S_{21}\right|=0.9462 \\
S_{22} & =-0.8226-j 0.9063 ;\left|S_{22}\right|=1.22
\end{aligned}
$$

Since $\left|S_{11}\right|>1$, the system is NOT unconditionally stable.

To draw the stability circle, the center and the radius of the circle should be computed using the following equations:

$$
\begin{gathered}
C=\frac{S_{22}^{*}-\Delta^{*} S_{11}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}=-0.6296-\mathrm{j} 0.0137 \\
R=\frac{\left|S_{12} S_{21}\right|}{\left|\left|S_{22}\right|^{2}-|\Delta|^{2}\right|}=0.3912 \\
\Delta=S_{11} S_{22}-S_{12} S_{21}=0.6530+j 1.8397
\end{gathered}
$$

Converting the calculated C and R to z parameters and normalizing to $Z_{0}=50 \Omega$ gives

$$
\mathrm{C}=0.2272-\mathrm{j} 0.0103 \text { and } \mathrm{R}=2.29
$$

The Smith chart shows the output stability circle. Since $\left|S_{11}\right|>1$, the whole region outside the stability circle is unstable. A portion of the Smith chart being unstable confirms again that the system is NOT unconditionally stable. The Γ_{L} is also plotted in the Smith chart and it can be seen to lie in the unstable region. To make the system stable, the Γ_{L} is brought inside the stability circle by following the constant resistance circle. Thus a reactive element of -j0.57 can be added in series with the load to make it stable.

4.

$$
Z_{\text {out }}=100+\mathrm{j} 200 \Omega
$$

Assuming characteristic impedance $Z_{0}=50 \Omega$, the normalized $Z_{\text {out }}=2+j 4 \Omega$
$\mathrm{Z}_{\text {out }}{ }^{*}$ must be matched to $\mathrm{Z}_{\mathrm{L}}=50 \Omega$

Steps:

- Follow the constant resistance circle from Z_{L} which corresponds to a series inductor with reactance value j 3 .

$$
Z=\frac{1}{Z_{0}} j \omega L ; L=24 n H
$$

- Follow the constant conductance circle downwards to reach $\mathrm{Z}_{\text {out }}{ }^{*}$ which corresponds to a parallel capacitor with susceptance value j0.5.

$$
Y=Z_{0} j \omega C ; C=1.59 p F
$$

With the same L and C , at $\omega=10 \mathrm{GHz}$, the impedance and admittance values will be $\mathrm{Z}=\mathrm{j}$ 30.14 and $Y=j 5$. Measuring from the center of Smith chart to the impedance point following the new L and C gives the magnitude of the reflection co-efficient (from the bottom of Smith chart). $\Gamma=1$ complete reflection in this case.

