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High Speed Electronics 2019 – Exercise 5 Solutions 

 

 

1. a) To determine S11  (Input reflection co-efficient) 

 
𝑍𝑖𝑛 = 𝑅 + 𝑍0 

𝑆11 = 𝛤𝑖𝑛 =
𝑍𝑖𝑛 − 𝑍0

𝑍𝑖𝑛 + 𝑍0
=  

𝑅

𝑅 + 2𝑍0
 

To determine S22 (Output reflection co-efficient) 

 
𝑍𝑜𝑢𝑡 = 𝑅 + 𝑍0 

𝑆22 = 𝛤𝑜𝑢𝑡 =
𝑍𝑜𝑢𝑡 − 𝑍0

𝑍𝑜𝑢𝑡 + 𝑍0
=  

𝑅

𝑅 + 2𝑍0
 

 

To determine S21 (Transverse gain) 

 

𝑉2 = 𝑉𝑠

𝑍0

𝑅 + 2𝑍0
 

𝑆21 =
2𝑉2

𝑉𝑠
= 

2𝑍0

𝑅 + 2𝑍0
 

                   

To determine S12 (Reverse gain) 
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𝑉1 = 𝑉𝑠

𝑍0

𝑅 + 2𝑍0
 

𝑆12 =
2𝑉1

𝑉𝑠
=  

2𝑍0

𝑅 + 2𝑍0
 

 

 

                   

b) To determine S11  (Input reflection co-efficient) 

 
𝑍𝑖𝑛 = 𝑅2||(𝑅1 + 𝑍0) 

𝑆11 = 𝛤𝑖𝑛 =
𝑍𝑖𝑛 − 𝑍0

𝑍𝑖𝑛 + 𝑍0
 

To determine S22 (Output reflection co-efficient) 

 
𝑍𝑜𝑢𝑡 = 𝑅1 + (𝑅2||𝑍0) 

𝑆22 = 𝛤𝑜𝑢𝑡 =
𝑍𝑜𝑢𝑡 − 𝑍0

𝑍𝑜𝑢𝑡 + 𝑍0
 

 

To determine S21 (Transverse gain) 
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𝑉2 = 𝑉𝑖𝑛

𝑍0

𝑅1 + 𝑍0
 

𝑉𝑖𝑛 = 𝑉𝑠

𝑍𝑖𝑛

𝑍𝑖𝑛 + 𝑍0
 

𝑆21 =
2𝑉2

𝑉𝑠
=  

2𝑍𝑖𝑛𝑍0

(𝑅1 + 𝑍0 )(𝑍𝑖𝑛 + 𝑍0)
 

                   

To determine S12 (Reverse gain) 

 

𝑉1 = 𝑉2

𝑍0||𝑅2

𝑅1 + (𝑅2||𝑍0)
 

𝑉2 = 𝑉𝑠

𝑍𝑜𝑢𝑡

𝑍𝑜𝑢𝑡 + 𝑍0
 

 

𝑆12 =
2𝑉1

𝑉𝑠
= 

2𝑍𝑜𝑢𝑡 (𝑍0||𝑅2)

(𝑅1 + (𝑅2||𝑍0))(𝑍𝑜𝑢𝑡 + 𝑍0 )
 

 

 

2. To determine S11                   

 

𝑆11 = 𝛤𝑖𝑛 =
𝑍𝑖𝑛 − 𝑍0

𝑍𝑖𝑛 + 𝑍0
 

𝑍𝑖𝑛 =  
𝑉𝑠

𝑖𝑖𝑛
 

𝑖2 = (𝑉1 − 𝑉2)𝑗𝜔𝐶𝑔𝑑 = 𝑔𝑚 𝑉1 + 𝑔𝑑 𝑉2 +
𝑉2

𝑍0
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𝑉2 =
𝑉1(𝑗𝜔𝐶𝑔𝑑 − 𝑔𝑚)

𝑗𝜔𝐶𝑔𝑑 + 𝑔𝑑 +
1

𝑍𝑜

 

𝑖𝑖𝑛 = (𝑉1 − 𝑉2)𝑗𝜔𝐶𝑔𝑑 +
𝑉1

(𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
)

 

Substituting for 𝑉2 in the 𝑖𝑖𝑛 expression above gives  

𝑍𝑖𝑛 =
𝑉1

𝑖𝑖𝑛
 

From which 𝑆11 can be calculated. 

To determine 𝑆22 

 

𝑆22 = Γ𝑜𝑢𝑡 =
𝑍𝑜𝑢𝑡−𝑍0

𝑍𝑜𝑢𝑡+𝑍0
 , where  𝑍𝑜𝑢𝑡 =

𝑉𝑠

𝑖𝑠
 

Writing KCL at node V1 

𝑖2 = (𝑉2 − 𝑉1)𝑗𝜔𝐶𝑔𝑑 =
𝑉1

(𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
)

+
𝑉1

𝑍0
 

𝑉1 =
𝑉2𝑗𝜔𝐶𝑔𝑑

(𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
+

1
𝑍0

+ 𝑗𝜔𝐶𝑔𝑑)
 

Similarly, KCL at node V2 

𝑖𝑠 = (𝑉2 − 𝑉1)𝑗𝜔𝐶𝑔𝑑 + 𝑉1𝑔𝑚 + 𝑉2𝑔𝑑 

Substituting for 𝑉1 in the 𝑖𝑠 expression above gives 𝑍𝑜𝑢𝑡 =
𝑉𝑠

𝑖𝑠
  from which 𝑆22 can be computed. 
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To determine 𝑆21 

 

𝑆21 =
2𝑉2

𝑉𝑠
 

Now we try to write V2,Vs can be calculated from KCL at nodes V1 and V2. 

𝑖2 = (𝑉1 − 𝑉2)𝑗𝜔𝐶𝑔𝑑 =
𝑉2

𝑍0
+ 𝑉1𝑔𝑚 + 𝑉2𝑔𝑑 

Which gives, 

𝑉1 =
𝑉2(𝑗𝜔𝐶𝑔𝑑 + 𝑔𝑑 +

1
𝑍0

)

(𝑗𝜔𝐶𝑔𝑑 − 𝑔𝑚)
 

Also,  

𝑖𝑠 =
(𝑉𝑠 − 𝑉1)

𝑍0
=

𝑉1

(𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
)

+ (𝑉1 − 𝑉2)𝑗𝜔𝐶𝑔𝑑 

Which results to,  

𝑉𝑠

𝑍0
= 𝑉1 (

1

𝑍0
+

1

(𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
)

+ 𝑗𝜔𝐶𝑔𝑑) − 𝑉2(𝑗𝜔𝐶𝑔𝑑) 

Solving the above equations and rearrange them to get 𝑆21 =
2𝑉2

𝑉𝑠
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To determine 𝑆12 

 

𝑆12 =
2𝑉1

𝑉𝑠
 

As usual, writing eh KCL equations at V1, V2 nodes 

𝑖2 =
𝑉1

𝑍0
+

𝑉1

(𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
)

= (𝑉2 − 𝑉1)𝑗𝜔𝐶𝑔𝑑 

𝑉2 =

𝑉1 (𝑗𝜔𝐶𝑔𝑑 +
1

𝑍0
+

1

(𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
)

)

𝑗𝜔𝐶𝑔𝑑
 

Also, 

𝑖𝑠 =
𝑉𝑠 − 𝑉2

𝑍0
= (𝑉2 − 𝑉1)𝑗𝜔𝐶𝑔𝑑 + 𝑉1𝑔𝑚 + 𝑉2𝑔𝑑 

𝑉𝑠

𝑍0
= 𝑉1(𝑔𝑚 − 𝑗𝜔𝐶𝑔𝑑) + 𝑉2 (𝑔𝑑 + 𝑗𝜔𝐶𝑔𝑑 +

1

𝑍0
) 

Substitute for V2 in the above expression and rearrange to get  

𝑆12 =
2𝑉1

𝑉𝑠
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3.  Since direct numerical calculations of S parameters is very tedious,  let us compute the numerical 

y-parameters and convert them to S-parameters. 

General hybrid π-model 

 

 

Comparing the above two models, the y-parameters cab be extracted at  

𝜔 = 2𝜋𝑓 = 2𝜋 ∗ 50 ∗ 109 = 314 ∗ 109 

 

𝑌11 = (𝑅 +
1

𝑗𝜔𝐶𝑔𝑠
)

−1

+ 𝑗𝜔𝐶𝑔𝑑 =
𝑗𝜔𝐶𝑔𝑠

1 + 𝑗𝜔𝑅𝐶𝑔𝑠
+ 𝑗𝜔𝐶𝑔𝑑 

=
𝜔2𝑅𝐶𝑔𝑠

2

1 + 𝜔2𝑅2𝐶𝑔𝑠
2 + 𝑗𝜔𝐶𝑔𝑑 +

𝑗𝜔𝐶𝑔𝑠

1 + 𝜔2𝑅2𝐶𝑔𝑠
2  

𝑌11 = 3.4 ∗ 10−4 + 𝑗1.5 ∗ 10−3 𝑆 

 

𝑌12 = −𝑗𝜔𝐶𝑔𝑑 = −𝑗1.57 ∗ 10−3 𝑆 

 

𝑌21 = 𝑔𝑚 − 𝑗𝜔𝐶𝑔𝑑 = 20 ∗ 10−3 − 𝑗1.57 ∗ 10−3 𝑆 

 

𝑌22 = 𝑔𝑑 + 𝑗𝜔𝐶𝑔𝑑 = 5 ∗ 10−3 + 𝑗1.57 ∗ 10−3𝑆 
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Using MATLAB y2s function, the parameters were converted and the absolute values of the 

S-parameters were obtained. 

𝑆11 = −0.8127 − 𝑗0.9502; |𝑆11| = 1.25 

𝑆12 =  0.1763 − 𝑗0.9397; |𝑆12| = 0.9561 

𝑆21 =  0.1674 − 𝑗0.9313; |𝑆21| = 0.9462 

𝑆22 = −0.8226 − 𝑗0.9063; |𝑆22| = 1.22 

Since |S11| >1, the system is NOT unconditionally stable.  

 

To draw the stability circle, the center and the radius of the circle should be computed using 

the following equations: 

𝐶 =
𝑆22

∗ − ∆∗𝑆11

|𝑆22|2 − |∆|2 = −0.6296 − j0.0137 

𝑅 =
|𝑆12𝑆21|

||𝑆22|2 − |∆|2|
= 0.3912 

∆ = 𝑆11𝑆22 − 𝑆12𝑆21 = 0.6530 + 𝑗1.8397 

 

Converting the calculated C and R to z parameters and normalizing to Z0 = 50 Ω gives 

C = 0.2272-j0.0103 and R = 2.29 

The Smith chart shows the output stability circle. Since |S11| >1, the whole region outside the 

stability circle is unstable. A portion of the Smith chart being unstable confirms again that the 

system is NOT unconditionally stable. The ΓL is also plotted in the Smith chart and it can be 

seen to lie in the unstable region. To make the system stable, the ΓL is brought inside the 

stability circle by following the constant resistance circle. Thus a reactive element of -j0.57 can 

be added in series with the load to make it stable.   
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4.  Zout = 100+j200 Ω 

Assuming characteristic impedance Z0 = 50 Ω, the normalized Zout = 2+j4 Ω 

Zout
* must be matched to ZL = 50 Ω 

 

Steps: 

 Follow the constant resistance circle from ZL which corresponds to a series inductor 

with reactance value j3. 

𝑍 =
1

𝑍0
𝑗𝜔𝐿 ; 𝐿 = 24 𝑛𝐻  

 Follow the constant conductance circle downwards to reach Zout
* which corresponds 

to a parallel capacitor with susceptance value j0.5. 

 

𝑌 = 𝑍0𝑗𝜔𝐶 ; 𝐶 = 1.59 𝑝𝐹 

 

With the same L and C, at ω = 10 GHz, the impedance and admittance values will be Z = j 

30.14 and Y = j5. Measuring from the center of Smith chart to the impedance point following 

the new L and C gives the magnitude of the reflection co-efficient (from the bottom of Smith 

chart). Γ = 1 complete reflection in this case.   
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