High-speed electronics HT2019 – Exercise 5

"Microwave amplifiers"

1) Using the expressions: $S_{11} = \Gamma_{in}$, $S_{12} = \frac{2v_1}{v_s}$, $S_{21} = \frac{2v_2}{v_s}$, $S_{22} = \Gamma_{out}$ calculate the S-parameters for the resistor circuits.

2) Calculate the S-parameters for the following transistor.

- 3) If $g_m = 20 \text{ mS}$, $g_d = 5 \text{ mS}$, $C_{gs} = 10 \text{ fF}$, $C_{gd} = 5 \text{ fF}$, $Ri = 1/(1.4g_m) \Omega$ for the transistor above:
 - a) calculate the absolute values of the S-parameters at $\omega = 50$ GHz.
 - b) Draw the output stability circle in the Smith chart. Is the transistor unconditionally stable?
 - c) If $\Gamma_L = -0.2 + 0.5j$, will the device be stable?
 - d) If not stable, add a reactance to the load to stabilize it.
- 4) Consider a two-port with Z_{out} = 100 + j200 Ohm
 - a) Find a suitable set of passive components to add at the output to match it to a 50 Ω load at $\omega = 1$ GHz. Tip: Use a Smith chart.
 - b) If ω = 10 GHz instead, how large fraction of the power will be reflected at this interface?