High Speed Electronics 2019-Exercise 4 solutions

$$
\text { 1. } \begin{aligned}
\mathrm{V}_{0} & =10 \mathrm{~V} \\
\mathrm{Z}_{s} & =50 \Omega \\
\mathrm{Z}_{\mathrm{L}} & =0 \Omega
\end{aligned}
$$

$$
\begin{gathered}
\Gamma_{S}=\frac{Z_{S}-Z_{0}}{Z_{S}+Z_{0}}=0 \\
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=-1
\end{gathered}
$$

$V_{1}^{+}=V_{0} \frac{z_{0}}{z_{S}+Z_{0}}$

$$
\begin{array}{r}
\mathrm{V}_{2}{ }^{+}=\mathrm{V}_{1}^{-} \Gamma_{\mathrm{s}} \\
\mathrm{~V}=\mathrm{V}_{1}^{-}+\mathrm{V}_{1}{ }^{+}+\mathrm{V}_{2}{ }^{+}=0 \mathrm{~V}
\end{array}
$$

2. For an open line,

$$
Z=-j Z_{0} \frac{1}{\tan (\beta l)}
$$

From the above equation, the length of the stub can be calculated as,

$$
l=\frac{1}{\beta} \tan ^{-1}\left(\frac{-j Z_{0}}{Z}\right)
$$

$$
\begin{gathered}
\beta=\frac{\omega}{v_{p}}=\frac{2 \pi f \sqrt{\varepsilon_{e f f}}}{c} \\
l=\frac{c}{2 \pi f \sqrt{\varepsilon_{e f f}}} \tan ^{-1}\left(\frac{-j Z_{o}}{Z}\right)
\end{gathered}
$$

For a capacitance $C=1 \mathrm{pF}$,

$$
Z=\frac{1}{j \omega C}=-j 16.7, \text { Which gives, } l=5.5 \mathrm{~mm}
$$

For an Inductor L= 1 nH,

$$
Z=j \omega L=j 62.8, \text { Which gives, } l=3.9 \mathrm{~mm}
$$

3. $Z_{o}=50 \Omega, Z_{1}=75 \Omega$
a) Injection/Reflection co-efficient

$$
\Gamma_{s}=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}=0.2
$$

Transmission co-efficient

$$
T=\frac{2 Z_{0}}{Z_{1}+Z_{0}}=1.2
$$

b) $V_{0}^{-}=V_{0}^{+} \Gamma_{s}=0.2 V$ and $V_{1}^{+}=V_{0}^{+} T=1.2 V$
c)

$$
\begin{aligned}
& P_{\text {in }}=\frac{1}{2} \frac{V_{0}^{+2}}{Z_{0}}=0.01 \mathrm{~W} \\
& P_{\text {avg }}=\frac{1}{2} \frac{V_{0}^{+2}}{Z_{0}}\left(1-\Gamma_{s}^{2}\right)=0.009 \mathrm{~W} \\
& P_{t}=P_{\text {in }} \Gamma_{s}^{2}=0.0004 \mathrm{~W} \\
& \quad P_{t r}=\frac{1}{2} \frac{V_{1}^{+2}}{Z_{1}}=0.0096 \mathrm{~W}
\end{aligned}
$$

Energy is conserved because,

$$
P_{i n}-P_{t}=P_{t r} \& P_{t r}=P_{a v g}
$$

4. General hybrid pi model

The corresponding simplified NQS model ($\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{D}}=\mathrm{R}_{\mathrm{G}}=0$)

$f_{\text {max }}$ is the frequency at which $U=1$,

$$
U=\frac{\left|y_{21}-y_{12}\right|^{2}}{4\left[\operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right)-\operatorname{Re}\left(y_{12}\right) \operatorname{Re}\left(y_{21}\right)\right]}
$$

Miller capacitance Cm is the feedback capacitance between gate and drain. So assuming $\mathrm{Cm}=0$, $y 12=0$

$$
\begin{gathered}
\operatorname{Re}\left(y_{11}\right)=\frac{\omega^{2} r_{c h}}{c_{g s}^{2}+\omega^{2} r_{c h}^{2}} \\
\operatorname{Re}\left(y_{22}\right)=g_{d} \\
y_{21}-y_{12}=g_{m}\left(\text { since } C_{m}=0\right) \\
\operatorname{Re}\left(y_{12}\right)=0 \\
U=\frac{g_{m}^{2}\left(C_{g s}^{2}+\omega^{2} r_{c h}^{2}\right)}{4 \omega^{2} r_{c h} g_{d}}=1 \\
f_{\max }=\frac{g_{m} C_{g s}}{2 \pi \sqrt{4 r_{c h} g_{d}-r_{c g}^{2} g_{m}^{2}}}
\end{gathered}
$$

5. $f_{T}=\frac{g_{m}}{2 \pi C_{g g}}$,

For $\mathrm{fT}>1 \mathrm{THz}$, the minimum required gm is, $g_{m}=2 \pi C_{g g} f_{T}=10^{12} * 2 \pi * C_{g g}$
From 1a, the calculated $\mathrm{Cgg}=0.23 \mathrm{fF} / \mu \mathrm{m}$.
Best case: When parasitic capacitances are of, $C_{g s}^{\prime}=C_{g d}^{\prime}=0.1 \mathrm{fF} / \mu \mathrm{m}$,
The total capacitance including parasitics is, $C_{g g}^{\prime}=C_{g g}+C_{g s}^{\prime}+C_{g d}^{\prime}=0.43 \mathrm{fF} / \mu \mathrm{m}$
The minimum $g m=2.7 \mathrm{mS} / / \mu \mathrm{m}$
Worst case: When parasitics are of, $C_{g s}^{\prime}=C_{g d}^{\prime}=0.5 f F / \mu m$,
The total capacitance including parasitics is, $C_{g g}^{\prime}=C_{g g}+C_{g s}^{\prime}+C_{g d}^{\prime}=1.23 \mathrm{fF} / \mu \mathrm{m}$
The minimum $\mathrm{gm}=7.72 \mathrm{~ms} / / \mu \mathrm{m}$

Typical transconductances of quasi-ballistic FETs are $2-4 \mathrm{mS} / \mu \mathrm{m}$, thus it can be reached with the bestcase condition considered. If the parasitic capacitances are too high, then it is not possible to achieve the desired transconductace for the given device.
6. De-normalizing the given parameters using the width $\mathrm{W}=10 \mu \mathrm{~m}$ gives,
$\mathrm{Gm}=20 \mathrm{mS}$
$\mathrm{Gd}=0.1 \mathrm{mS}$
$R i=30 \Omega$
Cgs $=30 \mathrm{fF}$
$C g d=3 f F$
To find the y-parameters at $f=60 \mathrm{GHz}$

$$
y_{11}=\left(R_{i}+\frac{1}{j \omega C_{g S}}\right)^{-1}+j \omega C_{g d}=0.0034+j 0.0113 S
$$

$\Omega y_{12}=-j \omega C_{g d}=-j 0.0011 S$

$$
\begin{aligned}
& y_{21}=g_{m}=0.02 S \\
& y_{22}=g_{d}=0.1 \mathrm{mS}
\end{aligned}
$$

Rollett's stability factor,

$$
K=\frac{2\left[\operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right)-\operatorname{Re}\left(y_{12}\right) \operatorname{Re}\left(y_{21}\right)\right]}{\left|y_{12} y_{21}\right|}=0.0304
$$

Maximum stable gain

$$
M S G=\left|\frac{y_{21}}{y_{12}}\right|=12.47 d B
$$

Maximum available gain,

$$
M A G=\left|\frac{y_{21}}{y_{12}}\right|\left(k-\sqrt{k^{2}-1}\right)
$$

The device is unstable at 60 GH s as $\mathrm{k}<1$. Therefore, MAG gives complex number. To stabilize the device, add a passive feedback that cancels the y_{12}

The gain after unilateralization is

$$
U=\frac{\left|y_{21}-y_{12}\right|^{2}}{4\left[\operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right)-\operatorname{Re}\left(y_{12}\right) \operatorname{Re}\left(y_{21}\right)\right]}=24.64 d B
$$

