High-speed electronics 2019 – Exercise 4

"Transmission Lines and Gain"

1. For a short-circuited transmission line connected to a constant voltage source (see below), we expect v(0,t) = 0 after a long time. However, when we close the line, there should be a voltage wave travelling towards the short. Draw a bounce diagram and explain on how v(0,t) settles to 0V!

2. A 100 Ω transmission line has ϵ_{eff} =1.5 and is used at f=10 GHz.

a) Find the *shortest* open-circuited stub making the line appear at a capacitance $C_{in}=1$ pF. b) Do the same for an inductance of $L_{in}=1$ nH instead.

- 3. A 50 Ω source is injecting power (P_{in}) with a voltage amplitude $V_0^+ = 1V$ towards a 50 Ω /75 Ω junction.
 - a) Calculate the injection and transmission coefficients.
 - b) Calculate the amplitude of V_0^- in the 50 Ω region and V_0^+ in the 75 Ω region.
 - c) Calculate the input power P_{in} , the reflected power P_t and the transmitted power P_{tr} . Show that energy is conserved – i.e. $P_{in} - P_t = P_{tr}$ and $P_{avg} = P_{tr}$ despite a larger V_0^+ in the 75 Ω region.

- 4. For the simplified NQS model, derive an expression for f_{max} , assuming that $R_D = R_G = R_S = 0$ (given C_{gs} , C_{gd} , g_m and g_d . Assume $C_m = 0$)
- 5. Parasitic capacitances add typically 0.1-0.5 fF/ μ m to C_{gs} and C_{gd} . For an InAs MOSFET with $L_g=20$ nm, $t_w=8$ nm, $t_{ox}=5$ nm, $\varepsilon_{rox}=25$,
 - a) how large g_m is needed to obtain $f_T>1THz$? (Assuming an optimistic $R_D=R_S=0$ and $g_d=0$).
 - b) Can this be reached with a (quasi-ballistic) FET?

- 6. A transistor is operated in saturation with $g_m = 2000 \ \mu\text{S}/\mu\text{m}$, $g_d = 10 \ \mu\text{S}/\mu\text{m}$, $R_i = 30 \ \text{Ohm}$, Cgs = 3fF/ μ m, Cgd =0.3 fF/ μ m. We neglect parasitic capacitances. Calculate the following at 60 GHz: Consider the width of the transistor to be 10 μ m for calculations.
 - a) The Stern stability factor of the device.
 - b) What is the maximum stable gain?
 - c) What is the maximum available gain?
 - d) Is the device stable at 60 GHz? If not then unilaterize the device and calculate U.