High-speed electronics HT2019 – Exercise 3

"Transistor AC and Noise"

- 1. Consider an NQS InGaAs FET with C_{GS} =10fF, g_m =20 mS, R_g =5 Ω and $\gamma = 1$.
 - a. Calculate the minimum noise figure and optimum noise impedance for f=10 GHz and f=94 GHz.
 - b. If the transistor is connected directly to a 50 Ω source. What is the corresponding noise figure, NF_{50} ?
 - c. Estimate the smallest voltage signal that the transistor can accurately amplify (when connected to a very low impedance voltage source), assuming a low frequency $(\omega RC \ll 1)$ signal bandwidth of Δf =1MHz.
 - d. A 50 Ω resistor is placed in parallel to C_{GS} . What is the minimum noise figure (at $f \approx 0 Hz$) for this device augmented with the 50 Ω resistor? Adding resistances to the device input is typically *NOT* a good idea in terms of noise performance!
- 2. Calculate C_{GS} (fF/ μ m) per unit gate width (in saturation) for HEMTs with channels of
 - a) InAs
 - b) In_{0.53}Ga_{0.47}As
 - c) GaN

Assume L_g =20 nm, t_w =8 nm, t_{ox} =5 nm, ε_{rox} =25.

- d) Which device of a-c should have the highest I_{DS} given that there is no scattering?
- 3. Given the following circuit,

- a) Calculate the y-parameter matrix
- b) Calculate the z-parameter matrix from the y-matrix
- c) Now add parasitic resistances to the system (as shown below) and calculate the z-matrix of the full system. Assume $R_{SD} = R_G/2 = R$.

d) Transform the circuit into a hybrid- π model.