High-speed electronics VT2019 – Exercise 2

"Transistors DC"

1. An InAs (ε_r =14.6, m^* =0.023m₀) quantum well FET has t_{ox} =4nm, ε_{ox} =22 and t_w =6 nm.

- a) Calculate the total gate capacitance, including the contribution of band bending.
- b) Calculate the position of the two lowest bound states, assuming the infinite well approximation.

2. Show that the total 1D gate capacitance for a quantum well FET can be written as $C_G = \frac{\epsilon_{ox}\epsilon_0}{t_{ox} + \Delta t}$. Determine Δt for the FET from (1).

3. The device in (1) is biased with V_{GS} - $V_T = 0.3$ V. Assuming degenerate conditions, calculate:

- a) V_{DS.sat}
- b) I_{DS,sat}

4. You will here demonstrate that for a 2D ballistic FET there is an optimal m*.

- a) Show in saturation that I_{DS} → 0 if m* is very large or very small.
 b) Obtain an expression for ∂I_{DS}/∂m* for the i_{DS,sat} assuming degenerate conditions.
- c) Set $\frac{\partial I_{DS}}{\partial m^*} = 0$, and show that the optimal m* is a function of C'_{ox} .
- d) What is the optimal m* for the FET in (1)?

5. The device in (1) has Source/Drain contacts with the following dimensions ($L_c x$) W) 100 nm x 500 nm, located at a 50 nm distance from the gate electrode. The specific contact resistivity is $\rho_{\sigma} = 1 \times 10^{-8} \Omega \text{cm}^2$. The doping level in the S/D regions is $n = 5 \times 10^{19} \text{ cm}^{-3}$ and $\mu = 4000 \text{ cm}^2/\text{Vs}$.

- a) Calculate the transfer length of the contact. Can one assume a vertical contact?
- b) What is the contact resistance of the contact?
- c) How large are the access resistances?
- d) How much will the total added series resistance reduce the measured saturation current of the transistor in (1)?