Written Examination EITP01 2019-03-21

Useful constants:

$$\begin{split} \hbar &= 1.055 \times 10^{-34} \, Js \\ k_B &= 1.381 \times 10^{-23} \, J/K \\ m_0 &= 9.109 \times 10^{-31} \, kg \\ \epsilon_0 &= 8.85 \times 10^{-12} \, Fm^{-1} \\ e &= q = 1.602 \times 10^{-19} \, C \\ c &= 2.998 \times 10^8 \, m/s \end{split}$$

1. Ballistic transport in QWFET

(15 p)

An InGaAs QWFET has the crossectional band structure shown below, with the following parameters:

t_w = t_{ox} = 5 nm $\varepsilon_{ox} = 20, \varepsilon_s = 14$ m* = 0.04m₀ A gate length of 70 m

A gate length of 70 nm and a width of 10 $\mu m.$

- a) Calculate the lowest two subband energy levels (E1 and E2) assuming an infinite well.
- b) Calculate the gate capacitance of the device when operated in the on-state.
- c) Explain the mechanism behind the current saturation in a ballistic transistor.
- d) The device is operated at $V_{DS} = V_{GS} = 0.5$ V. Is the device in saturation?
- e) Calculate the (quasi-)ballistic current I_{DS} assuming a transmission coefficient of 0.6.
- f) Calculate the transconductance at these operation conditions.

2. High frequency operation

(15 p)

Another QWFET device as seen below has $C_{ox} = 0.033 F/m^2$, $C_q = 0.028 F/m^2$ and $C_c = 0.057 F/m^2$, width of 10 µm and gate length of 90 nm. g_m = 55 mS and g_d = 5 mS.

- a. Calculate the intrinsic value of f_T for this device.
- b. In reality, the contact and source and drain resistances lead to finite values of R_s and R_D . This device has a specific contact resistivity of 10 $\Omega\mu m^2$, and a doping level of $1 * 10^{19} \ cm^{-3}$ and electron mobility of 500 cm²/Vs in the source/drain regions, while the channel itself has a mobility of 10000 cm²/Vs and doping level of $1.2 * 10^{16} \ cm^{-3}$. Due to a spacer process the low-doped channel region extends 5 nm outside of the gated area, while the gate-contact separation is 20 nm. Calculate R_s and R_D and comment on what is the largest contributor to the resistance.
- c. The fact that the contacts and gate are so closely spaced leads to a significant parasitic capacitance of $C_{gs,p} = C_{gd,p} = 5 fF$. Calculate f_T including the effect of source/drain resistance and parasitic capacitances.

3. Power Gain

(15 p)

A transistor device is modelled by a hybrid- π small signal model (including parasitics):

 $R_{G} = 20\Omega$ $C_{gd} = 5 \text{ fF}$ $R_{D} = 50\Omega$ $C_{gs} = 12 \text{ fF}$ V_{1} $g_{d} = 5 \text{ mS}$ $g_{m} = 40 \text{ mS}$ $R_{S} = 50\Omega$

Here we have assumed that $C_{sd} = C_{dg} = C_{dd} = C_m = 0$ for simplicity.

- a) Explain the reason for introducing the channel resistance $R_i = 1/(1.4g_m)$.
- b) Determine the z-parameters of the model at f = 100 GHz.
- c) Will the device be stable at this frequency?
- d) Use the proper metric to determine the power gain at this frequency.
- e) Determine f_{max} of the device. What could be done to improve f_{max} further?

4. Designing a Low noise amplifier

(15 p)

A transistor with $R = R_G + R_i = 44 \Omega$, $g_m = 20 \text{ mS}$, $\gamma = 2/3$ and $C_{gs} = 10.5 \text{ fF}$ is connected to a source with source impedance $Z_s = Z_0 = 50 \Omega$ and will be used as a low-noise amplifier at f = 50 GHz.

- a) Determine the source impedance that would optimize the noise figure and calculate the resulting minimum noise factor.
- b) Design an input matching network using 2.0 μ m wide microstrip transmission line and stub to obtain an optimal low noise amplifier. Assume a dielectric spacer with dielectric constant of $\varepsilon_r = 3$ and thickness of 5.0 μ m. (hint: Use a Smith chart)
- c) As an alternative, you now have the freedom to design the width of the transmission line freely. Design a matching network using a $\frac{\lambda}{4}$ transformer and a reactive element in series. (hint: Use a Smith chart)
- d) Which of these two networks is the most preferable? Motivate your answer.

Good luck!

Maximum score: 60 points