# Written Examination EITP01 2020-01-09

Allowed on exam: Textbook, handwritten notes, formula collection, printouts, calculator

Not allowed on exam: Mobile phone, computer (or anything else with internet access), solutions to old exam problems

#### Useful constants:

 $h = 1.055 \times 10^{-34} Js$   $k_B = 1.381 \times 10^{-23} J/K$   $m_0 = 9.109 \times 10^{-31} kg$   $\varepsilon_0 = 8.85 \times 10^{-12} Fm^{-1}$   $e = q = 1.602 \times 10^{-19} C$   $c = 2.998 \times 10^8 m/s$ 

#### 1. Semiconductor Physics (10 p)

- a) Under which circumstances is the Boltzmann approximation acceptable?
- b)  $E_{F}-E_{C} = 0.1 \text{ eV}$  for a piece of Si and a piece of Ge. Which has the highest free electron concentration and how high is it?
- c) For a single sub-band the Density of States in two dimensions  $(D_{2D})$  is constant. Derive the expression for  $D_{2D}$ .

### 2. Ballistic Transistor (15 p)

- a) For a quantum well FET, explain the origin of the semiconductor capacitance and the charge centroid capacitance.
- b) Calculate the total current through a single sub-band ballistic InAs QWFET in the linear regime, assuming  $E_{fs}$  E(0) = 0.2 eV,  $E_{fs}$ -E<sub>1</sub> = 0.3 eV and  $V_{DS}$  = 0.15 eV, m\* = 0.023m<sub>0</sub>, W = 10  $\mu$ m.
- c) In the output characteristics of the FET below one can identify R<sub>on</sub>, g<sub>d</sub> and BV<sub>DS</sub>. Explain
  (1) <u>the origin</u> of these and (2) <u>how</u> and (3) <u>why</u> they are affected if the gate length L<sub>G</sub> becomes very small.



d) How does the current depend on  $L_G$  in a purely ballistic device, and how does this change if the transmission T < 1?

## 3. AC Transistor (20 p)

- a) Assuming L<sub>G</sub> >>  $\lambda$ , calculate the y-parameters for  $\omega$  = 10 GHz in saturation for an InAs QW FET with 5 nm gate oxide ( $\varepsilon_{ox}$  = 25), L<sub>G</sub> = 50 nm, t<sub>w</sub> = 5 nm,  $\varepsilon_s$  = 15, W = 10 µm. Assume C<sub>GG</sub> = 10C<sub>GD</sub> and g<sub>m</sub> = 2 mS/µm = 10g<sub>d</sub>.
- b) The y-parameters of an InAs QWFET biased in saturation with  $L_G$  = 60 nm >>  $\lambda$ , W = 10  $\mu$ m are measured at f = 50 GHz to be

$$Y = \begin{bmatrix} 0.02 + j0.02 & -j0.002\\ 0.03 & 0.006 \end{bmatrix}$$

Derive the hybrid- $\pi$  model for the device and give values for all

resistances/conductances and capacitances (i.e.  $C_{gs}$ ,  $C_{gd}$ ,  $C_{sd}$ ,  $R_i$ ,  $g_m$  and  $g_d$ ).

- c) If one wants to maximize  $f_{\tau}$ , which parameters should be targeted and how are these improved in practice?
- d) A transistor with  $g_m = 2 \text{ mS}/\mu\text{m} = 10g_d$ ,  $L_G = 50 \text{ nm}$ ,  $W = 10 \mu\text{m}$  and total  $C_{gs} = 2\text{fF}$ ,  $C_{gd} = 1 \text{ fF}$ ,  $R_s = R_D = 50 \Omega$  starts out with a regular rectangular gate with  $\rho = 15 \mu\Omega cm$  obtains an improved T-gate design as shown below. The penalty is an additional parasitic  $C_{gs,p} = C_{gd,p} = 0.1 \text{ fF}$ . How much (in percent) does  $f_{max}$  improve by the new design? Hint: Use  $R_G = \frac{1}{2}W\rho/A$  where A is the crossectional area of the gate.



# 4. Amplifier Design (15 p)

- a) Given a unilateral transistor with  $g_m = 10 \text{ mS}$  and  $C_{gg} = 5 \text{ fF}$  and  $R_G = 50 \Omega$ ,  $R_i = 1/(1.4g_m)$ , calculate the optimal source impedance that minimizes the noise at f = 60 GHz. Also give the value of the minimal noise factor, NF. Assume  $\gamma = 1$  for simplicity.
- b) Given a transistor with measured S-parameters,

$$[S] = \begin{bmatrix} 0.7 + j0.03 & j0.2\\ 1 & 0.7 + j0.1 \end{bmatrix}$$

check for stability and calculate the maximum gain for stable operation.

- c) Design a matching network that conjugately matches the input of a transistor with  $Z_{in} = 50 + j25 \Omega$  at f = 50 GHz to a 50  $\Omega$  source using a transmission line and a stub, assuming metal lines of 1  $\mu$ m width and dielectric thickness of 2  $\mu$ m,  $\varepsilon_r = 3$ .
- d) Assuming that instead of the network in c) one could build a matching network using a  $\lambda/4$  transformer and a stub, which would be preferable and why?

Good luck!