Written Examination EITP01 2018-03-15

Useful constants:

$$\begin{split} \hbar &= 1.055 \times 10^{-34} \, Js \\ k_B &= 1.381 \times 10^{-23} \, J/K \\ m_0 &= 9.109 \times 10^{-31} \, kg \\ \epsilon_0 &= 8.85 \times 10^{-12} Fm^{-1} \\ e &= q = 1.602 \times 10^{-19} \, C \end{split}$$

1. Band structure

a) Derive the density of states of a two-dimensional single band system:

$$D_{2D}(E) = \frac{m^*}{\pi\hbar^2}$$

starting from $E(k) = \frac{\hbar^2}{2m^*} (k_x^2 + k_y^2)$, and k-spacing of $\frac{2\pi}{L}$.

b) For the infinite 2-dimensional quantum well drawn to the right with $m^* = 0.04m_0$ and sheet carrier concentration of 6×10^{12} cm⁻², calculate the Fermi energy with respect to the bottom of the conduction band.

2. Ballistic Transistor

- a) In a long-channel device the output current saturates above a certain V_{DS} because of channel pinch-off at the drain edge of the channel. However, in ballistic transistor the current saturates for a different reason. Explain.
- b) What determines the magnitude of I_{DS} in saturation (for a given V_{GS}) in a 2D single-band fully ballistic MOSFET?
- 3. An InGaAs single subband quantum well FET has $t_w = 8$ nm, W = 20 µm, $t_{ox} = 5$ nm, $\varepsilon_{ox} = 15$, $\varepsilon_r = 13$ and L_G = 40 nm and is designed to have $\lambda << L_G$. Assume R_s = R_D = R_G \approx 0.
- a) Calculate the intrinsic C_{GG} at $V_{DS} = 0$ V and in saturation.
- b) How would the capacitances be divided into C_{GS} and C_{GD} for the two cases?
- c) For V_{GS} V_T = 0.5 V, calculate the ballistic I_{DS} .
- d) If the device growth has problems so that the long channel mobility is only $\mu_n = 500 \text{ cm}^2/\text{Vs}$, how much lower would be drain current be? Use the thermal velocity $v_T = 2.6 \times 10^7 \text{ cm/s}$.
- e) If the quantum well thickness is decreased by a small amount t_w , without increasing any scattering, would the current calculated at V_{GS} V_T = 0.5 V change as compared with the result in c)? Motivate you answer!

4. For a device with a very small (i.e. negligible C_{GD}), the simplified NQS hybrid- π model can be drawn as below. R_G is the gate metal resistance and R_i the channel resistance.

 C_{GS} = 20 fF, g_{m} = 20 mS, g_{ds} = 5mS, R_{G} = 10 Ω and a noise excess factor $\gamma = 1$.

- a) Determine the y-parameters.
- b) Calculate MSG, and explain why this is a not a good metric for the device! Instead, which gain metric should be used for power amplifier design?
- c) Calculate f_{T} .
- d) Calculate f_{max} .
- e) If the device is cooled so that the *extrinsic* gate resistance becomes superconducting $(R_G \approx 0\Omega)$, what is the maximum f_{max} now?
- f) Calculate the minimum noise figure at $f = 0.1 f_T$ with and without a superconducting gate.
- 5. Consider a two-port system with input impedance of $Z_{in} = 80 + j\omega 5 \times 10^{-9} \Omega$ connected to a generator with an impedance $Z_G = Z_0 = 50 \Omega$. Use a Smith chart to solve the following tasks:
- a) What fraction of the power incident on the input is reflected at $\omega = 10$ GHz?
- b) While operating at the frequency $\left(f = \frac{\omega}{2\pi}\right)$ in a) one inserts a 57.1 cm long loss-less transmission line ($\epsilon_r = 3$) between the two-port and generator. Calculate the new input impedance as seen by the generator.
- c) Derive a matching network using only reactances (C, L) for the input of the two-port that works at this frequency.