UNIVERSITY

Large-scale and Dynamic
Simulations

Department of Electrical- and Information Technology

What if | have 10.000 entities to simulate?

« Sometimes simulation scenarios include many entities
— 200 overlapping WiFi nodes
— 150.000 lemmings dropping off a cliff
* Not a good strategy to hardcode this into the simulation
- Need to come up with scalable methods

F “RWARD!

O
Department of Electrical- and Information Technology Bjorn Landfeldt

An example

- Randomly placing 200 buckets in a field

 under X % of buckets you put an easter egg

* You distribute 10 kids in the field and they turn over one
bucket at a time, moving to the closest one after each try

* How long before all eggs are found?

Some new components here

» First, you need to be able to describe the algorithm for
how a kid operates (complex kid-object)

- Need to keep track of movement and initial coordinates
* Need to generate buckets and kids according to
distributions

* Need to have a config file to feed simulation parameters
for auto-generation of scenario and simulate many
different scenarios.

— ~—
N/ 3’(\
K RV
/. N/ / (AN
/O & QNS
(/A] 8% 2\
/N / 253 £ \
[</< J &% e
SRS
gl W
- | &= \'7() \
5‘ 2\ \ A) 4 I
\'7 \ el
\"2\ =% ,_f’
\\r/‘ =) /A

Object class bucket

- Bucket(x,y,egqg)
- int location = (x,y);
* boolean eqgg;

* Insert_into_matrix_of_buckets();

Object class kid

- Kid(x,y, speed)
- int location = (x,y);

» While(X

- Find_next_bucket(x,y);

- Move_to_next_bucket();

* this.x,y = X,y;

- if (bucket.egg), global egg—;
"}

Config file

Param

buckets = 200

kids = 10

eggs = 15 (%)

speed =2 (m/s)

field = 200, 200 (size of field in m)

Starting the simulation

* Need to use the config parameters in simulator
Open (File);
Read (parameters);
For (i = O0: i < buckets: i++){
X,y = random(size_x, size_y);
If (random() < prob_egg) egg_present = true;
new Bucket bucket =(x,y, egg_present);
bucket.Insert_into_matrix_of_buckets();

}

initiating kids

For (i = 0: i < kids: i++){
X,y = random(size_x, size_y);
new Kid kid =(x,y,speed);
}

Alternative way

- Config file contains all objects to insert in simulation,
external generation

 Write script in favourite language and generate file with all
objects to read in by simulator

New File file = open(config_file);
For (i = 0: i < buckets: i++){
X,y = random(size_x, size_y);
If (random() < prob_egg) egg_present = true;

writeToFile(type = Bucket\nl X,Y = x,y\nl, egg =
+egg_present.toString()

/,\j *S *'\f,\
/O LRY Mo
VOKY FEDN
/Q [ae €\
[] L] [] /——' [< / (..“x X g S
| L= /I
same with kids objects O arg)
1= | SR N
\ \ \ 4)4
\'7 \ Vbl
\\’} \) =% *—j//
0OX) —~/4

config file 2 example

* type = bucket
X,Y =13,46
egg=0

* type = bucket
X,Y =77,41

egg =1

- type = kid
X,Y =91,1
speed =2

A dynamic example

- Let’s consider simulating cars on a highway to find
probability of crash due to a moose entering the road

* We want
— long stretch of road (steady state)
— vehicle generation, moose generation

— models
- reaction time, breaking coefficient, headway, movement, overtaking

 We need to handle movement
- Relative location and velocity is dynamic

Scenario

T

HWay

<

Department of Electrical- and Information Technology Bjorn Landfeldt

Generation

- Generate according to distribution at beginning or
» Toroid approach

Department of Electrical- and Information Technology Bjorn Landfeldt o

Mobility

- Need variables for {acceleration, speed, location, time}
- calculate time for next event (getting close to car in front)

- Often some kind of random walk, random waypoint etc. in
simulations

— calculate time to next velocity change and insert signal

Data structures to speed up process

- Avoid sending signals to all vehicles
- One approach, keep list of vehicles that can interact

— array of locations, any event sent to neighbouring
vehicles in array for processing

- Update array with every overtaking
* Think of this as a dynamic map of the system

Moose steps out

MooseEnter(time, x-coordinate)

Find vehicle closest to x-coordinate, send Event(moose,
X-coordinate)

Venhicle calculates stopping distance d. (never mind the
signs)

_ +2
b= 00 g+ &
a 2

if d > (x-coordinate - vehicle location) collision++

Scalability

» Large simulations - high complexity and/or large data
volumes problem for your PC platform

- Standard practice, try to parallelise
— run instances of simulator on different machines
— program with threads, multi-core support

— There even exist techniques for distributing simulations
over clusters (not always easy)

Visualisation

- Can be very useful to increase understanding and insight
- Signals can be sent to GUI module

| | % uw@oO@T
| | -

Wi

\8\

o —
—-
R e Street—*
! . .
g
e Streata® e
—- a
| =]
[3 =
2
2 RS
2 AN

Department of Electrical- and Information Technology Bjorn Landfeldt

Real-time simulation

- Sometimes we want to see what happens in real time
— normally simulate as fast as possible

* Bind events to real time by comparing with real time clock
and use sleep() or similar

