

EITN95 Lecture 3, The artistic part and generating input

The creative process

- Make sure there is plenty of cheese and wine in the fridge...
- What do I want to know? What are the requirements?
- What do I know?, Which information / parts are interesting and what is noise?
- How can I simplify / what can I assume?
- Can I break the task down into manageable sub-tasks?
- Draw flow chart / state diagrams / architecture......
- Plan the verification and validation processes

Verification and Validation

Department of Electrical- and Information Technology

Verification

- Break model down into smaller bits and test each bit individually
- Examine the sanity of output, reasonable?
- Print parameters at end of program
- Have someone check the code
- Animate
- Compare with analytical results
- Little's theorem (for the queue example)

Little's theorem

A very general result!

Validation

- Often much more difficult than verification
- Talk to experts in the field
- Measure systems and compare results
- Can one find extremes, bounds?
 - Should the system tend to 0 or infinity when the input changes?

Generating Random Variables

Department of Electrical- and Information Technology

Very different ways have been used

- Manual methods (rolling a die etc.)
- Using tables of random numbers
- Irrational numbers, decimals of π etc.
- Physical systems, radioactive decay, vacuum tubes
- Computer real-time clock
- All methods have drawbacks

Department of Electrical- and Information Technology

Properties of a good method

- The routine should be fast
- The routine should be portable to different computers
- The routine should have a long cycle
- The random number should be replicable
- The random number should have the right distribution
- The random numbers should be uncorrelated

von Neuman, ca 1950

Midsquare method

- Take a number with 4 digits
 - Square the number
 - Take the 4 digits in the middle as new number
 - goto 1
- Very bad method, short sequences before repetition

Department of Electrical- and Information Technology

Pseudo-Random Numbers

- Definition: A sequence of pseudo-random numbers is a deterministic sequence of numbers having the same relevant statistical properties as a sequence of random numbers.
- The most widely used method of generating pseudorandom numbers are the congruential generators:

$$X_{i} = (aX_{i-1} + c) \mod M$$
$$U_{i} = X_{i}/M$$

• for a multiplier a, shift c, and modulus M, all integers

Department of Electrical- and Information Technology

Pseudo-Random Numbers

- The sequence is periodic, with maximum period M.
- The values of a and c must be carefully chosen to maximise the period of the generator, and to ensure that the generator has good statistical properties, e.g.

M	a	С
259	1313	0
2 ³²	69069	1
2 ³¹ -1	630360016	0
2 ³²	2147001325	715136305

Department of Electrical- and Information Technology

Generating Arbitrarily Distributed rvs

Let
$$F(x) = \Pr\{X \le x\}$$

- There is a theorem which says that, if *F*(*x*) is continuous, then *F*(*X*) is uniformly distributed on the interval (0,1).
- This can be used to generate random variables with other specified distributions.

Department of Electrical- and Information Technology

CDF Inverse Method

Inverse Method Example

• Exponential Distribution $(1 - e^{-\lambda X})$:

$$X = F^{-1}(Y) = -\frac{\ln(1-Y)}{\lambda}$$

Department of Electrical- and Information Technology

Gaussian Distribution

- No explicit inverse
- Approximate the inverse (Box and Muller 1958)

$$Q(x_p) = p$$

$$x_p = t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} \qquad t = \sqrt{\ln \frac{1}{p^2}} \qquad \begin{array}{c} c_0 = 2.515517 & d_1 = 1.432788 \\ c_1 = 0.802853 & d_2 = 0.189269 \\ c_2 = 0.010328 & d_3 = 0.001308 \end{array}$$

• Sum of Uniforms (Central Limit Theorem, Irwin-Hall) $X = \sum_{i=1}^{12} U_i - 6$ is approximately Gaussian....

Department of Electrical- and Information Technology

General Discrete Distribution

 Assume that we want to generate discrete random variables from a specified distribution, e.g.

 $\{p_k; k = 0, 1, \cdots, N\}$

The inversion method reduces to searching for an appropriate index in a table of probabilities:

If
$$\sum_{k=0}^{j-1} p_k \le U < \sum_{k=0}^{j} p_k$$
 then return $X = j$

Department of Electrical- and Information Technology

Example – Inverse Method for Discrete RV's

- Assume that the required distribution is
 - p0=0.5 p1=0.3 p2=0.2
- Then
 - if $0.0 \le U < 0.5$ return X=0 if $0.5 \le U < 0.8$ return X=1 if $0.8 \le U \le 1.0$ return X=2

Department of Electrical- and Information Technology

Table Method

- Generate a large array of size M, with
 - elements 1 to Mp_0
 - elements $Mp_0 + 1$ to $Mp_0 + Mp_1$
 - elements $Mp_0 + Mp_1 + 1$ to $Mp_0 + Mp_1 + Mp_2$

having the value 0,

having the value 1,

having the value 2,

etc.

- Then generate a uniform integer rv X from 1 to M. The Xth element of the array is a rv with the required distribution.
- This algorithm is very fast to run, but this is achieved at the expense of often requiring the allocation of large amounts of storage for the arrays.

Example: Table Method

- Assume that the required distribution is p₀=0.5, p₁=0.3, p₂=0.2
- Then construct an array of size 10 where 5 elements are zero, 3 are 1, and 2 are 2, i.e.
 [0,0,0,0,0,1,1,1,2,2]
- Now sample uniformly from this array. To do this, generate a uniform integer rv distributed from 1 to 10.
- If the generated rv is X, choose the Xth element of the array.

Example: Generating Truncated Poisson Distribution

$$p_k = \frac{\frac{A^k}{k!}}{\sum_{i=0}^N \frac{A^i}{i!}}$$

Department of Electrical- and Information Technology

Example: Table Method

- Truncated Poisson distribution with *A=5* and *N=8* {*p_k*}={0.0072, 0.0362, 0.0904, 0.1506, 0.1883, 0.1883, 0.1569, 0.1121, 0.0700}
- Construct an array of size (say) 10,000 where

– elements ⁻	1 to	72	have the	value 0,
– elements 7	73 to	434	have the	value 1,
– elements 4	435	to	1338	have the value 2,
– elements ⁻	1339	to	2844	have the value 3,
– elements 2	2845	to	4727	have the value 4,
– elements 4	4728	to	6610	have the value 5,
– elements 6	6611	to	8179	have the value 6,
– elements 8	3180	to	9300	have the value 7,
– elements §	9301	to	10000	have the value 8.

Now sample randomly from this array. The resulting rv will be approximately the required truncated Poisson.

Error analysis

- Almost all simulation models are approximations to some degree
 - Major question: How does this affect the validity of my results?
 - If I can't answer this question, what can I say about the results I get?

Department of Electrical- and Information Technology

Boundary cases

- General strategy
 - Identify worst and best cases
 - Perhaps for sub-components of the large simulation
 - get results for these cases and compare
- Especially, test parts where you know you have approximated

Error propagation

- Before statistical analysis (which captures stochastic nature)
 - Have I got errors in input data?
 - Have I rounded, approximated if so how much?
 - Can I estimate the uncertainty in my model?

Example, estimate volume

- Use logarithmic transformation
- Old result derived from Taylor series yield:

$$\Delta f(x) = \frac{\delta f(x)}{dx} \times \Delta x$$
$$\Delta x << x$$

from this we can derive rules for estimating error propagation

Department of Electrical- and Information Technology

Some examples

• x = a+b-c

$$\Delta x = \sqrt{\Delta a^2 + \Delta b^2 + \Delta c^2}$$

• x = a x b/c

$$\Delta x = \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta b}{b}\right)^2 + \left(\frac{\Delta c}{c}\right)^2}$$

• x = ln a

$$\Delta x = \frac{\Delta x}{x}$$

Department of Electrical- and Information Technology

Estimating volume of a cylinder

• Measure radius and length, say:

$$r = 1cm, \Delta r = 0.1cm$$
$$l = 8cm, \Delta l = 0.05cm$$
$$V = \pi r^2 \times l = 25.13$$
$$\Delta V = \sqrt{\left(\frac{\Delta r}{r}\right)^2 + \left(\frac{\Delta r}{r}\right)^2 + \left(\frac{\Delta l}{l}\right)^2} = \sqrt{\left(\frac{0.1}{1}\right)^2 + \left(\frac{0.1}{1}\right)^2 + \left(\frac{0.05}{8}\right)^2} = 0.02$$

Department of Electrical- and Information Technology

Generalisation

- A simulation collects results from a specific scenario
 - What conclusions can we draw from this in the general case?
- Word of caution don't generalize in general
 - Think first, am I sure nothing will pop up I have not foreseen?

Department of Electrical- and Information Technology

Next lecture

- Look at the statistical nature of measuring a stochastic process
- How can we estimate the error from this process
- How certain can we be that our result is an accurate reflection of reality?

