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The creative process

- Make sure there is plenty of cheese and wine in the
fridge...

- What do | want to know? What are the requirements?

» What do | know?, Which information / parts are
iInteresting and what is noise?

* How can | simplify / what can | assume?

- Can | break the task down into manageable sub-tasks?
- Draw flow chart / state diagrams / architecture
- Plan the verification and validation processes



Verification and Validation

Validation
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Model

Verification
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Verification

Break model down into smaller bits and test each bit
individually

Examine the sanity of output, reasonable?
Print parameters at end of program

Have someone check the code

Animate

- Compare with analytical results

- Little’s theorem (for the queue example)




Little’s theorem




Validation

- Often much more difficult than verification
- Talk to experts in the field

- Measure systems and compare results

« Can one find extremes, bounds?

— Should the system tend to 0 or infinity when the input
changes?




Generating Random Variables
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Very different ways have been used

- Manual methods (rolling a die etc.)

- Using tables of random numbers

* Irrational numbers, decimals of x etc.

- Physical systems, radioactive decay, vacuum tubes
- Computer real-time clock

« All methods have drawbacks



Properties of a good method

* The routine should be fast

 The routine should be portable to different computers
 The routine should have a long cycle

- The random number should be replicable

» The random number should have the right distribution
» The random numbers should be uncorrelated




von Neuman, ca 1950

Midsquare method

- Take a number with 4 digits
— Square the number
— Take the 4 digits in the middle as new number
—goto 1

 Very bad method, short sequences before repetition




Pseudo-Random Numbers

- Definition: A sequence of pseudo-random numbers is a
deterministic sequence of numbers having
the same relevant statistical properties as a sequence of
random numbers.

» The most widely used method of generating pseudo-
random numbers are the congruential generators:

X, = (aXl._1+c) mod M
U= X,/M

1

- for a multiplier a, shift ¢, and modulus M, all integers Py



Pseudo-Random Numbers

» The sequence is periodic, with maximum period M.

- The values of a and ¢ must be carefully chosen to
maximise the period of the generator, and to ensure that
the generator has good statistical properties, e.g.

M a c
259 1313 0
232 69069 1
231-1 630360016 0
232 2147001325 715136305



Generating Arbitrarily Distributed rvs

Let F(x) = Pr{)( < x}

- There is a theorem which says that, if F(x) is continuous,
then F(X) is uniformly distributed on the interval (0,1).

 This can be used to generate random variables with other
specified distributions.



CDF Inverse Method

Y~Uniform(0,1)
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Inverse Method Example

« Exponential Distribution (1 - e*X):

ln(l—Y)

X=F(r)-- -




Gaussian Distribution

* No explicit inverse
« Approximate the inverse (Box and Muller 1958)

0x,) = p
Gl 1 ¢y = 2515517 dy =1.432788
P T dprd vde T2 ¢ = 0.802853  dy = 0.189269

¢, =0.010328 d; =0.001308

- Sum of Uniforms (Central Limit Theorem, Irwin-Hall)
12

X = EIU,- -6 is approximately Gaussian....




General Discrete Distribution

» Assume that we want to generate discrete random
variables from a specified distribution, e.g.

{pkak = O,l,"',N}

The inversion method reduces to
searching for an appropriate index in
a table of probabilities:
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Example — Inverse Method for Discrete RV’s

- Assume that the required distribution is

pP0=0.5
pP1=0.3
p2=0 . 2 X=0 X=1 X=2
p N A
+ Then IREN
If 0.0 <= U< 0.5return X=0 0 |

If 0.5 <U<0.8 return X=1
If 0.8 <U < 1.0 return X=2




Table Method

e Generate a large array of size M, with
- elements 1 to Mpo having the value 0,
- elements Mpo +1 to Mpo + Mp+ having the value 1,
- elements Mpo + Mp1 +1 to Mpo + Mp1 + Mp2 having the value 2,
etc.

e Then generate a uniform integer rv X from 1 to M. The
Xth element of the array is a rv with the required
distribution.

e This algorithm is very fast to run, but this is achieved at
the expense of often requiring the allocation of large
amounts of storage for the arrays. P,



Example: Table Method

» Assume that the required distribution is
pPo=0.5, p1=0.3, p2=0.2
« Then construct an array of size 10 where 5 elements are

zero, 3 are 1, and 2 are 2, i.e.
[0,0,0,0,0,1,1,1,2,2]

- Now sample uniformly from this array. To do this,
generate a uniform integer rv distributed from 1 to 10.

- If the generated rv is X, choose the Xt element of the
array.



Example: Generating Truncated Poisson
Distribution
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Example: Table Method

* Truncated Poisson distribution with A=5 and N=8
{px}={0.0072, 0.0362, 0.0904, 0.1506, 0.1883, 0.1883, 0.1569, 0.1121, 0.0700}

 Construct an array of size (say) 10,000 where
have the value 0O,
have the value 1,

—elements 1 to 72
—elements 73 to 434
— elements 435 to
— elements 1339 to
— elements 2845 to
— elements 4728 to
— elements 6611 to
— elements 8180 to
— elements 9301 to

1338
2844
4727
6610
8179
9300
10000

have the value 2,
have the value 3,
have the value 4,
have the value 5,
have the value 6,
have the value 7,

have the value 8.

* Now sample randomly from this array. The resulting rv will be approxmately/ \

the required truncated Poisson.
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Error analysis

» Almost all simulation models are approximations to some
degree

— Major question: How does this affect the validity of my
results?

— If | can’t answer this question, what can | say about the
results | get?




Boundary cases

- General strategy
— ldentify worst and best cases
— Perhaps for sub-components of the large simulation
— get results for these cases and compare

- Especially, test parts where you know you have
approximated




Error propagation

- Before statistical analysis (which captures stochastic
nature)

— Have | got errors in input data?
— Have | rounded, approximated if so how much?
— Can | estimate the uncertainty in my model?




Example, estimate volume

 Use logarithmic transformation
- Old result derived from Taylor series yield:

Af(z) = 5@5”) x Az

Ar << x

- from this we can derive rules for estimating error
propagation




Some examples

* X = a+b-c

Ax =/ Aa2 + Ab2 + Ac2

« X=axbl/c
s () () + (%)
Xx=Ilna

A
Ap = =2

X




Estimating volume of a cylinder

- Measure radius and length, say:

r = lem, Ar = 0.1cm
[ = 8cm, Al = 0.05cm

V =mr? x [ =25.13




Generalisation

- A simulation collects results from a specific scenario

— What conclusions can we draw from this in the general
case?

- Word of caution - don’t generalize in general

— Think first, am | sure nothing will pop up | have not
foreseen?




Next lecture

 Look at the statistical nature of measuring a stochastic
process

- How can we estimate the error from this process

« How certain can we be that our result is an accurate
reflection of reality?




