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Integer Programming

One assumption of linear programming is that decision
variables can take on fractional values such as X1 = 0.33 
or X3 = 1.57 .
Yet a large number of business problems can be solved 
only if variables have integer values.

When an airline decides how many planes to purchase, it 
cannot place an order for 5.38 aircraft ; it must order 4, 5,
6, or some other integer amount. 
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Introduction

l Integer Programs (IP) : 
l (NP-hard)  computational complexity

l Mixed Integer Linear Program (MILP)
l Generally (NP-hard)

l However, many problems can be solved surprisingly 
quickly!

Philip Kilby, Australian National University, 2008
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(Mixed) Integer Programming

• Integer Programming: 
Øall variables must have Integer values

• Mixed Integer Programming :
Ø some variables have integer values

Exponential solution times! 

Philip Kilby, Australian National University, 2008
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IP Examples (1)

Example IP formulation

The Knapsack problem:

I wish to select items to 
put in my backpack. 
Ø There are m items 

available. 
Ø Item i weights wi kg, 
Ø Item i has value vi. 
Ø I can carry Q kg.
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Philip Kilby, Australian National University, 2008
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IP Examples (2)

Task Allocation
Øn jobs, m machines
ØJob i has a load of qi (e.g. amount of CPU 

resource)
ØThe cost of doing job i by machine j is cij

ØThe load capacity of machine j is Qj

Objective: assign all jobs with a minimum total 
cost

Philip Kilby, Australian National University, 2008
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Formulation
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Philip Kilby, Australian National University, 2008



9

Vehicle Routing Problem (VRP)

What is the optimal set of routes for a fleet 
of vehicles to traverse in order to deliver to a 
given set of customers?
• n customers and m vehicles
• ci,j – the distance or cost of travel 

from i to j
• qj – load at j
• Qk – capacity of vehicle k

What vehicle should visit each customer, and in what 
order, to minimize costs?

If m =1 vehicle à Travel Salesman Problem (TSP)

Philip Kilby, Australian National University, 2008
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Traditional formulation
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IP Formulation Tricks (1)

Logical constraints in IP
Ø If x then not y ( assume x , y ϵ {0 , 1}):    (1 – x) M  ≥ y

(M is “big M” – a large value – larger than any feasible value for y)

Ø x or y or both (x , y ϵ {0 , 1}):    x + y ≥ 1

Ø x ≤ 1 or x ≥ 5 (x is real number):             
• define a binary variable w ϵ {0 , 1}

if w = 1 à x ≤ 1 + M(1-w)

if w = 0 à x ≥ 5 – Mw

Ø x + 2y ≥ 10 or 4x – 10y ≤ 2 ( x and y are real numbers) :

• define a binary variable w ϵ {0 , 1} and big M

if w = 1 à x + 2y ≥ 10 - M(1-w)

if w = 0 à 4x – 10y ≤ 2 + Mw

Philip Kilby, Australian National University, 2008



IP Formulation Tricks (2)
• For the purpose of this course, LP formulation is highly crucial. In 

your homework, you will be asked to do the formulation.
• So, start learning the tricks by practice!
• Find out interesting tricks here:
http://mixedintegerprogramming.weebly.com/uploads/1/4/1/8/14181742

/integer_programming_tricks_-_aimms_modeling_guide.pdf
And here
http://ocw.mit.edu/courses/sloan-school-of-management/15-053-

optimization-methods-in-management-science-spring-2013/lecture-
notes/MIT15_053S13_lec11.pdf

12
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Solving IPs

How can we solve IPs problems?

Philip Kilby, Australian National University, 2008
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Solving IP

• Some problem classes have the “Integrality 
Property”: all solution naturally fall on integer points 
e.g.
– Maximum Flow problems
– Assignment problems

• If the constraint matrix has a special form, it will 
have the Integrality Property:
– Totally unimodular
– Balanced
– Perfect

• But, not all problems have such properties

Philip Kilby, Australian National University, 2008



Solving IP by relaxing to LP

Maximize Z = 100x1 + 150x2

subject to:

8,000x1 + 4,000x2 £ 40,000 

15x1 + 30x2 £ 200

x1, x2 ³ 0 and integer

Optimal Solution:

Z = $1,055.56

x1 = 2.22 

x2 = 5.55

OBS! We get non-integer solution

Feasible Solution Space with Integer Solution Points
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Solving IP

• How about solving LP Relaxation followed by 
rounding?

-cT

x1

x2

LP Solution

Integer Solution

Philip Kilby, Australian National University, 2008



17

Solving IP
• In general, rounding does not work!

• LP solution provides lower bound (for minimization) and upper 
bound (for maximization) on IP

• But, rounding can be arbitrarily far away from integer solution

-cT

x1

x2

Philip Kilby, Australian National University, 2008
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Solving IP

• Combine both approaches
ØSolve LP Relaxation to get fractional solutions
ØCreate two sub-branches by adding 

constraints

-cT

x1

x2

LP Solution

Integer 
Solution

Philip Kilby, Australian National University, 2008
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Solving IP

• Combine both approaches
ØSolve LP Relaxation to get fractional solutions
ØCreate two sub-branches by adding 

constraints

-cT

x1

x2
x2 ≥ 2

Philip Kilby, Australian National University, 2008
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Solving IP

• Combine both approaches
ØSolve LP Relaxation to get fractional solutions
ØCreate two sub-branches by adding 

constraints

-cT

x1

x2

x2 ≤ 1

Philip Kilby, Australian National University, 2008



An Example Maximization Problem
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Harrison Electric Company

PURE INTEGER PROBLEM

The Harrison Electric Company produces two products: old-fashioned

chandeliers and ceiling fans. Both products require a two-step process

involving wiring and assembly.

It takes 2 hours to wire each chandelier and 3 hours to wire a ceiling

fan.  

Final assembly of the chandeliers and fans requires 6 and 5 hours, re-

spectively.  

The production capability is such that only 12 hours of wiring time and

30 hours of assembly time are available. 

If each chandelier produced nets the firm $7.00 and each fan $6.00, the

Production mix decision can be formulated using LP as follows:



Harrison Electric Company

Maximize profit = $7.00 X1 + $6.00 X2

subject to:

2X1 + 3X2 =< 12  ( wiring hours )

6X1 + 5X2 =< 30  ( assembly hours )

X1, X2 => 0  

where:

X1 = number of chandeliers produced

X2 = number of ceiling fans produced

The Model



Harrison Electric Company

0                1                  2                3                4                5               6  

6

5

4

3

2

1

0

X2

X1

+ +

+ +

+

+ +

+

6X1 + 5X2 =< 30 ( assembly hours )

2X1 + 3X2 =< 12 ( wiring hours )

Optimal LP Solution

( X1 = 3.75 , X2 = 1.5 , Profit = $35.25 )

+  =  Possible Integer Solution



Harrison Electric Company

q The optimal solution is X1 = 3.75 chandeliers and X2 = 1.5 ceiling
fans.

q Rounding to X1 = 4 and X2 = 2 makes the solution unfeasible.

q Rounding to X1 = 4 and X2 = 2 is probably not the optimal
feasible integer solution either .

q There are 18 feasible integer solutions to this problem.

q The optimal integer solution is X1 = 5 and X2 = 0 , with a total
profit of $35.00 . 

q The integer restriction reduced profit from $35.25 to $35.00

q An integer solution can never produce a greater profit than the
LP solution to the same problem.

DISCUSSION



Harrison Electric Company
Listing all feasible solutions and selecting the one with the best objective

function value is called the enumeration method.  This can be virtually
impossible for large problems where the number of feasible solutions is

extremely large !

Chandeliers ( X1 ) Ceiling Fans ( X2 ) Profit ( Z )
0 0 $0.00
1 0 7
2 0 14
3 0 21
4 0 28
5 0 35
0 1 6
1 1 13
2 1 20

Integer
optimal
solution



Harrison Electric Company
Listing all feasible solutions and selecting the one with the best objective

function value is called the enumeration method.  This can be virtually
impossible for large problems where the number of feasible solutions is

extremely large !

Chandeliers ( X1 ) Ceiling Fans ( X2 ) Profit ( Z )
3 1 27
4 1 34
0 2 12
1 2 19
2 2 26
3 2 33
0 3 18
1 3 25
0 4 24

Rounding
optimal
solution



Branch-and-Bound Method

Throughout the procedure, remember that the lower bound 
solution is determined by feasible integer solutions. Upper bound
is determined by fractional LP solutions. Define two parameters LB and
UB to update the lower bound and upper bound.

1. Solve the original problem using linear programming. 
If the answer satisfies the integer constraints, we are
done.
If not, this value provides an initial upper bound for 
the objective function.

2. Find any feasible solution that meets the integer con-
straints for use as a lower bound.  Usually, rounding
down each variable will accomplish this. 



Branch-and-Bound Method

3. Branch on one variable from step 1 that does not 
have an integer value. Split the problem into two 
subproblems based on integer values that are above
and below the noninteger value. 

For example,  if X2 = 3.75 was in the optimal linear
programming solution, introduce constraint X2 => 4
in the first subproblem,  and  X2 =< 3 in the second
subproblem.



Branch-and-Bound Method

4. Create nodes at the top of these new branches by
solving the new problems.



Branch-and-Bound Method

5. a   If a branch yields a solution that is not feasible,
terminate the branch.

5. b  If a branch yields a solution that is feasible, but
not an integer solution, go to step 6.

5. c  If the branch yields a feasible integer solution,
look at the objective function. If its value equals
the upper bound, an optimal solution has been 
reached.

If it is not equal to the upper bound, but exceeds
the lower bound, set it as the new lower bound
and go to step 6.

Finally, if it is less than the lower bound, terminate
this branch.



Branch-and-Bound Method

6. Examine both branches again and set the
upper bound equal to the maximum value
of the objective function at all final nodes.

If the upper bound equals the lower bound, 
stop.

If not, go back to step 3 .



Harrison Electric Company

Maximize profit = $7.00 X1 + $6.00 X2

subject to:

2X1 + 3X2 =< 12  ( wiring hours )

6X1 + 5X2 =< 30  ( assembly hours )

X1, X2 => 0  

where:

X1 = number of chandeliers produced

X2 = number of ceiling fans produced

The Model

REVISITED



Harrison Electric Company
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6X1 + 5X2 =< 30 ( assembly hours )

2X1 + 3X2 =< 12 ( wiring hours )

Optimal NON-INTEGER LP Solution
( X1 = 3.75 , X2 = 1.5 , Profit = $35.25 )

+  =  Possible Integer Solution

REVISITED



Branch-and-Bound Method

§ Since X1 and X2 are not integers, the solution is not valid.

§ The profit of $35.25 will be the initial upper bound.

§ Rounding down gives X1 = 3, X2 = 1, profit = $27.00 , which
is feasible and can be used as a lower bound. 

X1=3.75
X2=1.5

P=35.25

Upper Bound = $35.25

Lower Bound = $27.00
(rounding down)

Original
Non-Integer

Solution



Branch-and-Bound Method

§ We divide the problem into two subproblems, A and B

§ We can branch on either the non-integer X1 or X2

§ We choose X1 this time

X1=3.75
X2=1.5

P=35.25

Upper Bound = $35.25

Lower Bound = $27.00
(rounding down)

Original
Non-Integer

Solution



Branch-and-Bound Method

Subproblem A

Max Z = $7X1 + $6X2
s.t.           2X1 + 3X2 =< 12

6X1 + 5X2 =< 30
X1 => 4

X1=3.75
X2=1.5

P=35.25

Upper Bound = $35.25

Lower Bound = $27.00
(rounding down)

Original
Non-Integer

Solution

Subproblem B

Max Z = $7X1 + $6X2
s.t.           2X1 + 3X2 =< 12

6X1 + 5X2 =< 30
X1 =< 3



Branch-and-Bound Method

X1=3.75
X2=1.5

P=35.25

Upper Bound = $35.25

Lower Bound = $27.00
(rounding down)

X1=4
X2=1.2

P=35.20

Subproblem A

X1=3
X2=2

P=33.00

Subproblem B

Noninteger Solution

Upper Bound = $35.20

Lower Bound = $33.00

This Branch
Solution Is Integer

New Lower Bound $33.00



Branch-and-Bound Method

§ Subproblem A is now branched into two new 
subproblems, C and D

§ Subproblem C has the additional constraint of
X2 => 2

§ Subproblem D has the additional constraint of 
X2 =< 1

§ The logic here is that since A’s optimal solution 
of X1 = 1.2 is not feasible, the integer feasible
answer must lie at X2 => 2 or X2 =< 1



Branch-and-Bound Method

Subproblem C

Max Z = $7X1 + $6X2
s.t.           2X1 + 3X2 =< 12

6X1 + 5X2 =< 30
X1 => 4
X2 => 2

Subproblem D

Max Z = $7X1 + $6X2
s.t.           2X1 + 3X2 =< 12

6X1 + 5X2 =< 30
X1 => 4
X2 =< 1

Subproblem C has no feasible solution whatsoever because the first
two constraints are violated if X1 => 4 and X2 => 2 constraints are
observed.  We terminate this branch and do not consider its solution.

Subproblem D’s solution is X1 = 4.17, X2 = 1, profit = $35.16. This non-
integer solution yields a new upper bound of $35.16. 



Branch-and-Bound Method

X1=3.75
X2=1.5

P=35.25

X1=4
X2=1.2

P=35.20

Subproblem A

X1=3
X2=2

P=33.00

Subproblem B

Upper Bound 
= $35.16

Lower Bound
= $33.00

No
Feasible
Solution

X1=4.17
X2=1

P=35.16

Subproblem C

Subproblem D
X1 => 4

X1 =< 3

X2 => 2

X2 =< 1



Branch-and-Bound Method

Subproblem E

Max Z = $7X1 + $6X2
s.t.           2X1 + 3X2 =< 12

6X1 + 5X2 =< 30
X1 => 4
X1 =< 4
X2 =< 1

Subproblem F

Max Z = $7X1 + $6X2
s.t.           2X1 + 3X2 =< 12

6X1 + 5X2 =< 30
X1 => 4
X1 => 5
X2 =< 1

Finally, we create subproblems E and F and solve for X1 and X2 with 
the additional constraints X1 =< 4 and X1 => 5 .



Full Branch-and-Bound Solution

X1=3.75
X2=1.5

P=35.25

X1=4
X2=1.2

P=35.20

Subproblem A

X1=3
X2=2

P=33.00

Subproblem B

No
Feasible
Solution

X1=4.17
X2=1

P=35.16

Subproblem C

Subproblem D

X1 => 4

X1 =< 3

X2 => 2

X2 =< 1

X1=4
X2=1

P=34.00

X1=5
X2=0

P=35.00

Subproblem E

Subproblem F

X1 =< 4

X1 => 5

Feasible
Integer

Solution

Feasible
Integer
Optimal
Solution

The stopping rule for the branching process is that we continue until the new upper
bound is less than or equal to the lower bound or no further branching is possible. 
The latter is the case here since both branches yielded feasible integer solutions. 

Harrison Electric Company
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Branch & Bound (for Minimization IP)

• Branch and Bound Algorithm

1.Solve LP relaxation to get a lower bound on cost for 

current branch

• If solution exceeds upper bound, branch is terminated

• If solution is integer, replace upper bound on cost

2.Create two branched problems by adding constraints 

to original problem

• Select integer variable with fractional LP solution

• Add integer constraints to the original LP 

3.Repeat until no branches remain, return optimal 

solution.

Philip Kilby, Australian National University, 2008



An Example Minimization 
Problem

45
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Branch & Bound

• Example: a problem with 4 variables, all 
required to be integer

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

x1≤1 x1≥2

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

x1≤1 x1≥2

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
Infeasible

x1≤1 x1≥2

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
Infeasible

x1≤1 x1≥2

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

x1≤1 x1≥2

x2≤2
x2≥3

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1)

x1≤1 x1≥2

x2≤2
x2≥3

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1) z* = 384.1

x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1) z* = 384.1

x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1) z* = 384.1

x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1) z* = 384.1

x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1) z* = 384.1

x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1) z* = 384.1

x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

Philip Kilby, Australian National University, 2008
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
infeasible

z* = 375.2
x=(1,2,3.5,3.1) z* = 384.1

x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2

Philip Kilby, Australian National University, 2008


