Simulation

Lecture O1 Optimization: Linear Programming

Saeed Bastani

Outline of the course

- Linear Programming (1 lecture)
- Integer Programming (1 lecture)
- Heuristics and Metaheursitics (3 lectures)

Lab Exercises

> Two Lab Exercises

- Solving linear and integer programs using MATLAB and Excel
- Implementing and simulation of heuristics and metaheuristics
- ✓Compulsory

Outline of this lecture

- Introduction
- Classification of Optimization Problems
- Linear Programming (LP)
- Examples of LP
- Development of LP
- Graphical Solution to LP Problems
- The Simplex Method and Simplex Tableau
- Duality
- Marginal Values and Sensitivity Analysis
- LP Solvers

Introduction (1)

> Optimization:

- the act of obtaining the best result under given circumstances.
- also, defined as the process of finding the conditions that lead to optimal solution(s)

Mathematical programming:

methods to seek the optimum solution(s) to a problem

Steps involved in mathematical programming

- Conversion of stated problem into a mathematical model that abstracts all the essential elements of the problem.
- Exploration of different solutions of the problem.
- Finding out the most suitable or optimum solution.

> Operations research:

 a branch of mathematics concerned with the application of scientific methods and techniques to decision making problems and with establishing the best or optimal solutions.

Introduction (2) Methods of Operational Research

Mathematical Programming Techniques	Stochastic Process Techniques	Statistical Methods
Calculus methods	Statistical decision theory	Regression analysis
Calculus of variations	Markov processes	Cluster analysis, pattern
Nonlinear programming	Queueing theory	recognition
Geometric programming	Renewal theory	Design of experiments
Quadratic programming	Simulation methods	Discriminate analysis
Linear programming	Reliability theory	(factor analysis)
Dynamic programming		
Integer programming		
Stochastic programming		
Separable programming		
Multiobjective programming		
Network methods: CPM and		
PERT		
Game theory		
Simulated annealing		
Genetic algorithms		
Neural networks		

Introduction (3)

Mathematical optimization problem:

minimize f(x)subject to $g_i(x) \le b_i$, i = 1,...,m

- x=(x₁,...,x_n): design variables (unknowns of the problem, they must be linearly independent)
- $g_i: \mathbb{R}^n \rightarrow \mathbb{R}$: (i=1,...,m): inequality constraints
- There might be equality constraints as well

Introduction (4) Constraint Types

- Behaviour constraints: represent limitations on the behaviour or performance of the system
- Side constraints: represent physical limitations on design variables such as manufacturing limitations

Introduction (5) Constraints Surface

Free and acceptable point

Free and unacceptable point

Bound and acceptable point

Bound and unacceptable point

Introduction (6) Objective Function Surfaces

- In simple problems, the optimum point can be determined using graphical method.
- In large problems, the constraint and objective function surfaces become complex even for visualization
 - the problem has to be solved using mathematical techniques.

Classification of Optimization Problems (1)

- > Constraints \rightarrow constrained vs. non-constrained
- ➢ Design variables → static vs. dynamic and deterministic vs. stochastic
- ➤ Equations (objective function and constraints) → linear, non-linear, geometric, quadratic
- ➢ Permissible values of design variables → integer vs. real-valued
- >Number of objectives → single vs. multi-objective
 ...

Classification of Optimization Problems (2)

Linear Programming Model (1)

Let: $X_1, X_2, X_3, \dots, X_n$ = decision variables

Z = Objective function or linear function

Requirement: Maximization of the linear function Z.

 $Z = c_1 X_1 + c_2 X_2 + c_3 X_3 + \dots + c_n X_n$ (1)

subject to the following linear constraints:

$$a_{11}\mathbf{x}_{1} + a_{12}\mathbf{x}_{2} + \dots + a_{1n}\mathbf{x}_{n} \le b_{1}$$
$$a_{21}\mathbf{x}_{1} + a_{22}\mathbf{x}_{2} + \dots + a_{2n}\mathbf{x}_{n} \le b_{2}$$

(2)

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

where a_{ii}, b_i, and c_i are given constants.

Linear Programming Model (2)

• A more efficient notation:

maximize
$$Z = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$, $i = 1, ..., m$ (3)
 $x_j \ge 0, i = 1, ..., n$

• A compact matrix form: maximize $Z = \mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A}\mathbf{x} \le \mathbf{b}$ $x_i \ge 0, i = 1,...,n$

Why we talk about Linear Programming?

- LP is simpler than NLP, hence, good for a foundation
- Linearity has some unique features for optimization
- A lot of problems are or can be converted to a LP formulation
- Some NLP algorithms are based upon LP simplex method

LP Problems Example 1: Blending Problem

An oil company makes two blends of fuel by mixing three oils. The costs and daily availability of the oils are given below:

0:1	Cost	Amount available
UI	(\$/litre)	(litres)
A	0.30	6,000
В	0.40	10,000
С	0.48	12,000

The requirements of the blends of fuel:

	at least 30% of A
Blend 1	at most 50% of <i>B</i>
	at least 30% of C
	at most 40% of A
Blend 2	at least 35% of B
	at most 40% of C

- Each litre of blend 1 can be sold for \$1.10 and each litre of blend 2 can be sold for \$1.20. Long-term contracts require at least 10,000 litres of each blend to be produced. Formulate this blending problem as a linear programming problem
- Objective: the problem wants to maximize the profit obtained from making and selling the two types of blends of fuel

LP Problems Example 2: Product Scheduling

- A manufacturer knows that it must supply a given number of items of a certain product each month for the next n months.
- They can be produced either in regular time, subject to a maximum each month, or in overtime. The cost of producing an item during overtime is greater than during regular time. A storage cost is associated with each item not sold at the end of the month.
- The problem is to determine the production schedule that minimizes the sum of production and storage costs.

LP Problems Example 3: Transportation Problem

- The problem of finding the minimum-cost distribution of a given commodity from a group of supply centers (sources) i=1,...,m to a group of demanding centers (destinations) j=1,...,n
- > Each source i has a certain supply (s_i)
- > Each destination j has a certain demand (d_i)
- The cost of shipping from a source to a destination is directly proportional to the number of units shipped

LP Problems Example 3: Transportation Problem

 x_{ij} : The amount of commodity to be shipped from ith source to jth destination c_{ij} : The cost of shipment from ith source to jth destination

Developing LP Model (1)

- Steps:
 - Determine the objective and formulate it as a function of decision variables.
 - Specify and formulate the constraints.
 - Use/develop a method to solve the problem
 - Graphically
 - Simplex, revised simplex, Ellipsoid, etc.
 - Interior point
 - Do further analysis (shadow price, sensitivity, etc.)

Developing LP Model (2) Example: Product mix

The N. Dustrious Company produces two products: I and II. The raw material requirements, space needed for storage, production rates, and selling prices for these products are given as below:

	Pro	ducts	
	Ι	II	Capacity
Storage Space (ft ² /unit)	4	5	1500 ft ²
Raw Material (lb/unit)	5	3	1575 lb
Production rate (units/hr)	60	30	7 hours
Selling price (\$/unit)	13	11	

Manufactured products are shipped out of the storage area at the end of the day -> the two products must share the total raw material, storage space, and production time

Developing LP Model (3) Example: Product mix

>Objective:

 the company wants to determine how many units of each product to produce per day to maximize its total income.

Solution

- The company has decided that it wants to maximize its sale income, which depends on the number of units of product I and II that it produces.
- The decision variables, x₁ and x₂ represent the number of units of products I and II, respectively, produced per day.

Developing LP Model (4) Example: Product mix

• The object is to maximize:

 $Z = 13x_1 + 11x_2$

subject to the constraints on storage space, raw materials, and production time.

• Each unit of product I requires 4 ft² of storage space and each unit of product II requires 5 ft². The total space (?) must be less than or equal to the available storage space, which is 1500 ft². Therefore,

 $4X_1 + 5X_2 \le 1500$

Similarly, each unit of product I and II produced requires 5 and 3 lbs, respectively, of raw material. Hence a total of 5x₁ + 3x₂ lb of raw material is used.

Developing LP Model (5) Example: Product mix

• This must be less than or equal to the total amount of raw material available, which is 1575 lb. Therefore,

 $5x_1 + 3x_2 \le 1575$

• Product I can be produced at the rate of 60 units per hour. Therefore, it must take 1 minute or 1/60 of an hour to produce 1 unit. Similarly, it requires 1/30 of an hour to produce 1 unit of product II. Hence a total of $x_1/60 + x_2/30$ hours is required for the daily production. This quantity must be less than or equal to the total production time available each day. Therefore,

 $x_1 / 60 + x_2 / 30 \le 7$ or $x_1 + 2x_2 \le 420$

 Finally, the company cannot produce a negative quantity of any product, therefore x₁ and x₂ must each be greater than or equal to zero

Developing LP Model (6) Example: Product mix

Maximize $13x_{1} + 11x_{2}$

Subject to :

$4x_{1} + 5x_{2}$	≤1500	(Storage constraint))	
$5x_{1} + 3x_{2}$	≤1575	(Raw material constraint)	(4)
$x_{1} + 2x_{2}$	\leq 420	(Prodcution time constraint)	
	$\mathbf{x}_{1} \ge 0$		
	$\mathbf{x}_2 \ge 0$		

Graphical Solution Example: Product mix

Key Observations

- Optimum must be at the intersection of constraints
- Intersections are easy to find
- Intersections are called basic solutions
- Some intersections are outside the feasible region and so need not be considered
- The others (at the corners of the feasible region) are called basic feasible solution

Simplex Method (1)

- When decision variables are more than 2, it is always advisable to use Simplex Method to avoid lengthy graphical procedure.
- The simplex method is not used to examine all the feasible solutions.
- It deals only with a finite and usually small set of feasible solutions, the set of corner points (i.e., extreme points) of the convex feasible space that contains the optimal solution.

Simplex Method (2)

≻Steps:

1. Find an initial corner point in the feasible region.

- 2. Examine each boundary edge intersecting at this point to see whether movement along any edge increases the value of the objective function.
- 3. If the value of the objective function increases along an edge, move along this edge to the adjacent corner point. Test optimality.
- 4. Repeat steps 2 and 3 until movement along any edge no longer increases the value of the objective function.

Simplex Method (3) Example: Product mix

Step 1: find an initial feasible corner point

> Convert all the inequality constraints into equalities using slack variables:

 S_1 = unused storage space

 S_2 = unused raw materials

 S_3 = unused production time

(4)

> Our original LP model was:

Maximize $13x_1 + 11x_2$

Subject to :

 $\begin{array}{ll} 4x_1 + 5x_2 &\leq 1500 \quad (Storage \ constraint)) \\ 5x_1 + 3x_2 &\leq 1575 \quad (Raw \ material \ constraint) \\ x_1 + 2x_2 &\leq 420 \quad (Prodcution \ time \ constraint) \\ x_1 \geq 0 \\ x_2 \geq 0 \end{array}$

Simplex Method (4) Example: Product mix

Apply the slack variables to (4) to get this augmented form of LP as follows:

	$Z - 13x_1 - 11x_2$	=0	(A1)	
Subje	ect to:			
Storage constraint:	$4x_{1} + 5x_{2} + S_{1}$	=1500	(B1)	(5)
Material constraint:	$5x_{1} + 3x_{2} + 3x_{3}$	$-S_{2} = 1575$	(C1)	
Prod. time constraint:	$x_{1} + 2x_{2}$	$+S_{3} = 420$	(D1)	
	$x_{1} \ge 0, x_{2} \ge 0,$	$S_{_{1}} \ge 0, S_{_{2}} \ge 0, S_{_{3}} \ge$	0	

> A feasible solution to (5) is: (how?) $(x_1, x_2, S_1, S_2, S_3) = (0, 0, 1500, 1575, 420)$

Simplex Method (5) Example: Product mix

Step 2: check if improvement is possible

- ➤ The coefficients of x₁ and x₂ in Eq. (A1) are negative → Z can be increased by increasing either x₁ or x₂. Choose x₁ (?)
- > In Eq. (B1), if $x_2 = S_1 = 0$, then $x_1 = 1500/4 = 375$ + there is only sufficient storage space to produce 375 units of product I.
- From Eq. (C1)→there is only sufficient raw materials to produce 1575/5 = 315 units of product I.
- From Eq. (D1)→ there is only sufficient time to produce 420/1 = 420 units of product I.
- From all three constraints, there is sufficient resource to produce only 315 units of $x_1 \rightarrow$ thus the maximum value of x_1 is limited by Eq. (C1).

Simplex Method (6) Example: Product mix

Step 3: move to the next corner point

 \succ From Equation C1, which limits the maximum value of x₁.

$$x_1 = -\frac{3}{5}x_2 - \frac{1}{5}S_2 + 315 \tag{6}$$

 \succ Substituting Eq.(6) in Eq.(5), we get this new formulation:

$$Z - \frac{16}{5}x_{2} + \frac{13}{5}S_{2} = 4095 \quad (A2)$$

$$+ \frac{13}{5}x_{2} + S_{1} - \frac{4}{5}S_{2} = 240 \quad (B2)$$

$$x_{1} + \frac{3}{5}x_{2} + \frac{1}{5}S_{2} = 315 \quad (C2)$$

$$\frac{7}{5}x_{2} - \frac{1}{5}S_{2} + S_{3} = 105 \quad (D2)$$

$$(7)$$

Simplex Method (7) Example: Product mix

 \succ From equations (7), the new feasible solution is:

 $x_1 = 315$, $x_2 = 0$, $S_1 = 240$, $S_2 = 0$, $S_3 = 105$, and Z = 4095

 \succ Optimality Test: this is not the optimum solution (from Eq.(A2)).

The coefficient of x₂ in the objective function represented by A2 is negative (-16/5), which means that the value of Z can be further increased by giving x₂ some positive value.

Simplex Method (8) Example: Product mix

Repeat steps 2 to 3:

> Following the same analysis procedure used in step 1, it is clear that::

- In Eq. (B2), if $S_1 = S_2 = 0$, then $x_2 = (5/13)(240) = 92.3$.
- From Eq. (C2), x_2 can take on the value (5/3)(315) = 525 if $x_1 = S_2 = 0$
- From Eq. (D2), x_2 can take on the value (5/7)(105) = 75 if $S_2 = S_3 = 0$
- > Therefore, constraint D2 limits the maximum value of x_2 to 75. Thus a new feasible solution includes $x_2 = 75$, $S_2 = S_3 = 0$.

Simplex Method (9) Example: Product mix

From Equation D2:

$$x_2 = \frac{1}{7}S_2 - \frac{5}{7}S_3 + 75 \tag{8}$$

 \succ Substituting this equation into Eq. (7) yield:

$$Z + \frac{15}{7}S_2 + \frac{16}{7}S_3 = 4335 \quad (A3)$$

$$S_1 - \frac{3}{7}S_2 - \frac{13}{7}S_3 = 45 \quad (B3)$$

$$x_1 + \frac{2}{7}S_2 - \frac{3}{7}S_3 = 270 \quad (C3)$$

$$x_2 - \frac{1}{7}S_2 + \frac{5}{7}S_3 = 75 \quad (D3)$$

From these equations, the new feasible solution is readily found to be: $x_1 = 270$, $x_2 = 75$, $S_1 = 45$, $S_2 = 0$, $S_3 = 0$, Z = 4335.

The Simplex Method (10)

- Optimality Test: the coefficients in the objective function represented by Eq. (A3) are all positive, this new solution is the optimum solution.
 - Optimal solution: $x_1 = 270$, $x_2 = 75$, $S_1 = 45$, $S_2 = 0$, $S_3 = 0$, Z = 4335.

Simplex Tableau for Maximization (1)

Step 1: Set up the initial tableau using Eq. (5).

 $Z - 13x_{1} - 11x_{2} = 0$ (A1)

Subject to :

$4x_{1} + 5x_{2} + S_{1}$	=150	0 (B1)	(5)
$5x_{1} + 3x_{2} + 3x_{3}$	$S_{2} = 1575$	5 (C1)	
$x_{1} + 2x_{2}$	$+S_{3} = 420$	(D1)	
$x_{1} \ge 0, x_{2} \ge 0, S$	$S_{1} \ge 0, S_{2} \ge 0, S_{2}$	₃ ≥ 0	

Upper

	•	Basic		Coefficients of:					Right-	on
In any iteration, a variable that	Row Number	Vari- able	Z	x_1	x2	<i>S</i> ₁	S2	S ₃	Hand Side	Entering Variable
has a nonzero	Initial tabl	leau				· .				
solution is	A1 B1	$Z S_1$	1 0	$\begin{bmatrix} -13\\4 \end{bmatrix}$	-11 5	0	0	0 0	0 1500	375
called a basic	C1	S_2	(0)	5	3	0	1	0	1575	315)
	D1	S_3	0		2	0	0	1	420	420

Simplex Tableau for Maximization (2)

- Step 2: Identify the variable that will be assigned a nonzero value in the next iteration so as to increase the value of the objective function. This variable is called the entering variable.
 - It is the non-basic variable which is associated with the smallest negative coefficient in the objective function.
 - If two or more non-basic variables are tied with the smallest coefficients, select one of these arbitrarily and continue.
- Step 3: Identify the variable, called the leaving variable, which will be changed from a nonzero to a zero value in the next solution.

Simplex Tableau for Maximization (3)

Step 4: Enter the basic variables for the second tableau. The row sequence of the previous tableau should be maintained, with the leaving variable being replaced by the entering variable.

Upper

	Basic	Basic Coefficients of:							Bound on
Row	vari- able	Z	<i>x</i> ₁	x2	S_1	S2	S3	Hand Side	Variable
Initial tabl	leau				· .	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		
A1	\boldsymbol{Z}^{+}	1	(-13)	-11	0	0	0	0	•
B 1	S_1	0	4	5	1	0	0	1500	375
C1	S_2	(0)	5	3	0	1	0	1575	315)
D1	S_3	0		2	0	0	1	420	420
Second tab	bleau at e	end of j	first iterat	ion					
A2	Z	1	0	$\left(-\frac{16}{5}\right)$	0	$+\frac{13}{5}$	0	4095	
B2	S_1	0	0	$\frac{13}{5}$	1	$-\frac{4}{5}$	0	240	92.3
C2	x_1	0	1	$\frac{3}{5}$	0	$\frac{1}{5}$	0	315	525
D2	S3	0	0	$\left(\frac{7}{5}\right)$	0	$-\frac{1}{5}$	1	105	75

Simplex Tableau for Maximization (4)

Step 5: Compute the coefficients for the second tableau. A sequence of operations will be performed so that at the end the x₁ column in the second tableau will have the following coefficients:

The second tableau yields the following feasible solution:

 $x_1 = 315$, $x_2 = 0$, $S_1 = 240$, $S_2 = 0$, $S_3 = 105$, and Z = 4095

Simplex Tableau for Maximization (5)

- > The row operations proceed as follows:
 - The coefficients in row C2 are obtained by dividing the corresponding coefficients in row C1 by 5.
 - The coefficients in row A2 are obtained by multiplying the coefficients of row C2 by 13 and adding the products to the corresponding coefficients in row AI.
 - The coefficients in row B2 are obtained by multiplying the coefficients of row C2 by -4 and adding the products to the corresponding coefficients in row BI.
 - The coefficients in row D2 are obtained by multiplying the coefficients of row C2 by -1 and adding the products to the corresponding coefficients in row DI.

Simplex Tableau for Maximization (6)

- Step 6: Check for optimality. The second feasible solution is also not optimal, because the objective function (row A2) contains a negative coefficient. <u>Another iteration beginning with step 2 is</u> <u>necessary</u>.
- In the third tableau (next slide), all the coefficients in the objective function (row A3) are positive. Thus an optimal solution has been reached and it is as follows:

 $x_1 = 270, x_2 = 75, S_1 = 45, S_2 = 0, S_3 = 0, and Z = 4335$

Basic				Coeffici	ents of:			Right-	Upper Bound on
Kow Number	able	Z	<i>x</i> ₁	x2	<i>S</i> ₁	S2	S3	Side	Variable
Initial table	eau		\sim	· .	÷	· · · · · · · · · · · · · · · · · · ·		· · ·	
A1 B1	$\frac{Z}{S_1}$	1 0	$\begin{pmatrix} -13 \\ 4 \end{pmatrix}$	-11 5	0 1	0	0	0 1500	375
C1	S_2	(0	5	3	0	1	0	1575	315)
D1	S_3	0		2	0	0	1	420	420
Second tab	leau at e	nd of fi	irst iterati	on			•		
A2	Z	1	0	$\left -\frac{16}{5}\right $	0	$+\frac{13}{5}$	0	4095	
B2	S_1	0	0	$\frac{13}{5}$	1	$-\frac{4}{5}$	0	240	92.3
C2	x_1	0	1	$\left \begin{array}{c} \frac{3}{5} \end{array} \right $	0	$\frac{1}{5}$	0	315	525
D2	S3	0	0	$\left(\frac{7}{5}\right)$	0	$-\frac{1}{5}$	1	105	75
Third table	au at end	l of seco	ond and fi	nal iterati	on				
A3	Z	1	0	0	0	$+\frac{15}{7}$	$+\frac{16}{7}$	4335	
B 3	S_1	0	0	0	1	$-\frac{3}{7}$	$-\frac{13}{7}$	45	
C3	x_1	0	1	0	0	<u>2</u> 7	$-\frac{3}{7}$	270	
D3	<i>x</i> ₂	0	0	1	0	- <u>1</u>	<u>5</u> 7	75	

Duality (1)

With every linear programming problem, there is associated another linear programming problem which is called the dual of the original (or the primal) problem.

Interpretation and Formulation of the Dual Problem

- Consider again the production mix problem of N. Dustrious Company.
 - Suppose that the company is considering leasing out the entire production facility to another company, and it must decide on the <u>minimum daily rental</u> <u>price</u> that will be acceptable.
 - This decision problem can also be formulated as a linear programming problem.

Duality (2)

- Let y₁ y₂ and y₃ represent the unit price of each unit of storage space, raw materials, and production time
- The unit prices are in fact the income values of each unit of resource to the N. Dustrious Company.
- There are available 1500 ft² of storage space, 1575 lb of raw materials, and 420 minutes of production time per day
- Thus the total income value (P) of all the available resources may be expressed as follows :

 $P = 1500y_1 + 1575y_2 + 420y_3$

The objective of the problem is to <u>minimize P</u> subject to the condition that the N. Dustrious Company will earn at least as much income as when it operates the production facility itself

Duality (3)

Since the market value (or selling price) of 1 unit of product I is \$13 and it requires 4 ft² of storage space, 5 lbs of raw materials, and 1 minute of production time, the following <u>constraint</u> must be satisfied:

$$4y_1 + 5y_2 + y_3 \ge 13$$

Similarly, for Product II:

$$5y_1 + 3y_2 + 2y_3 \ge 11$$

> In addition, the unit prices y_1 , y_2 and y_3 must all be greater than or equal to zero.

Duality (4)

The new linear programming problem may now be summarized as follows :

Minimize $1500y_1 + 1575y_2 + 420y_3$ (Dual Problem) Subject to: $4y_1 + 5y_2 + 1y_3 \ge 13$ (C1) (1)

$$5y_{1} + 3y_{2} + 2y_{3} \ge 11 \quad (C2)$$

$$y_{1} \ge 0, \ y_{2} \ge, \ y_{3} \ge 0$$

> The following interesting observations can now be made

o
$$P = Z = $4335$$

o
$$y_1 = \$0; y_2 = \$15/7 \text{ and } y_3 = \$16/7$$

This problem is the same as maximization problem in the previous example and can now be solved accordingly.

Duality (5)

The primal-dual relationship

Primal Problem Maximize

 $Z = c_1 x_1 + c_2 x_2$

subject to:

 $k_{11}x_{1} + k_{12}x_{2} \le b_{1}$ $k_{21}x_{1} + k_{22}x_{2} \le b_{2}$ $k_{31}x_{1} + k_{32}x_{2} \le b_{3}$ all $x_{i} \ge 0$ Dual Problem Minimize $P = b_1y_1 + b_2y_2 + b_3y_3$ subject to: $k_{11}y_1 + k_{21}y_2 + k_{31}y_3 \ge c_1$ $k_{12}y_2 + k_{22}y_2 + k_{32}y_3 \ge c_2$ all $y_i \ge 0$

Duality (6)

Complete Regularization of the Primal Problem

Consider the following primal problem:

Maximize subject to: $Z = 12x_1 + 4x_2$ $4x_1 + 7x_2 \le 56$ $2x_1 + 5x_2 \ge 20$ $5x_1 + 4x_2 = 40$ $x_1 \ge 0$ $x_2 \ge 0$

The first inequality requires no modification.

Duality (7)

The second inequality can be changed to the less-than-or-equalto type by multiplying both sides of the inequality by -1 and reversing the direction of the inequality; that is,

$$-2x_1-5x_2\leq -20$$

The equality constraint can be replaced by the following two inequality constraints:

$$5x_1 + 4x_2 \le 40$$
$$5x_1 + 4x_2 \ge 40$$

If both of these inequality constraints are satisfied, the original equality constraint is also satisfied.

Duality (8)

Multiplying both sides of the inequality by –1 and reversing the direction of the inequality yields:

 $-5x_1-4x_2 \le -40$

> The primal problem can now take the following standard form:

Maximize

 $Z = 12x_1 + 4x_2$

subject to:

 $4x_{1} + 7x_{2} \leq 56$ $-2x_{1} - 5x_{2} \leq -20$ $5x_{1} + 4x_{2} \leq 40$ $-5x_{1} - 4x_{2} \leq -40$ $x_{1} \geq 0$ $x_{2} \geq 0$

Duality (9)

> The dual of this problem can now be obtained as follows:

Minimize

subject to:

$$P = 56y_1 - 20y_2 + 40y_3 - 40y_4$$
$$4y_1 - 2y_2 + 5y_3 - 5y_4 \ge 12$$
$$7y_1 - 5y_2 + 4y_3 - 4y_4 \ge 4$$
$$all y_i \ge 0$$

Marginal Values of Additional Resources (1)

- The simplex solution yields the optimum production program for N. Dustrious Company.
 - The company can maximize its sale income to \$4335 by producing 270 units of product I and 75 units of product II.
 - There will be no surplus of raw materials and production time
 - But there will be 45 units of unused storage space
- We want to know if it is worthwhile to increase the production by procuring additional units of raw materials or by working overtime.

Marginal Values of Additional Resources (2)

Some insightful questions:

- What is the income value (or marginal value) of each additional unit of each type of resources?
- What is the maximum cost (or marginal cost) worthwhile to pay for each additional unit of resources?
- Answers to these questions can be obtained from the objective function in the last tableau of the simplex solution:

$$Z + \frac{15}{7}S_2 + \frac{16}{7}S_3 = \$4335$$

that is,

$$Z = \$4335 - \frac{15}{7}S_2 - \frac{16}{7}S_3$$

Marginal Values of Additional Resources (3)

- > In the final Tableau, S_1 , S_2 and S_3 represent surplus resources
 - > Thus, $-S_1$, $-S_2$, $-S_3$ represent additional units of the resources that can be made available.
- The marginal value (in Excel solver, it is called shadow price) of one additional unit of each resource:

Storage space
$$= \frac{\partial Z}{\partial (-S_1)} = \$0$$

Raw materials $= \frac{\partial Z}{\partial (-S_2)} = \$\frac{15}{7}$
Production time $= \frac{\partial Z}{\partial (-S_3)} = \$\frac{16}{7}$

Sensitivity Analysis

Sensitivity analysis helps to test the sensitivity of the optimum solution with respect to changes of the coefficients in the objective function, coefficients in the constraints inequalities, or the constant terms in the constraints.

✤ In the Product Mix example:

- > The original selling prices (i.e. \$13 and \$11) of the two products may vary from time to time (i.e. $13 \pm \Delta$ and $11 \pm \Delta$). How much these prices can change without affecting the optimality of the present solution?
- The amount of each type of resources needed to produce one unit of each type of product can be either increased or decreased slightly. Will such changes affect the optimal solution ?
- Will the present solution remain the optimum solution if the amount of raw materials, production time, or storage space is suddenly changed because of shortages, machine failures, or other events?

LP Solvers

- Excel Solver → good for small problems, it comes with a sensitivity analysis tool
- > ILOG CPLEX \rightarrow is the world's leader
- ≻Xpress-MP from Dash Optimization → good for medium scale problems
- > lp_solve open source project \rightarrow very useful
- ➤MATLAB solvers → efficient and simple, a lot of optimization methods are available. Sensitivity analysis tool (ssatool) is only available in the latest version.

MATLAB LP Solver

Linprog() for medium scale problems uses the Simplex algorithm

>> f = [-5; -4; -6]; Example >> A = [1 -1 1 Find x that minimizes 324 $f(x) = -5x_1 - 4x_2 - 6x_3,$ 3 2 0]; >> b = [20; 42; 30]; subject to >> lb = zeros(3,1); $x_1 - x_2 + x_3 \le 20$ >> x = linprog(f,A,b,[],[],lb);>> Optimization terminated. $3x_1 + 2x_2 + 4x_3 \le 42$ >> x x = $3x_1 + 2x_2 \le 30$ 0.0000 15.0000 $0 \le x_1, 0 \le x_2, 0 \le x_3.$ 3.0000

References

≻Book:

 Linear Programming: Foundations and Extensions / by Robert J Vanderbei

Presentation slides:

- Linear Programming / by Syed M. Ahmed
- Optimization /by Pelin Gündeş