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• The different methods employ very different 
techniques in order explore a larger part of the 
search space 

▫ Simulated Annealing relies on controlled random 
movement

▫ Tabu Search relies on memory structures, 
recording enough information to guide the search 
to different areas of the search space (e.g., 
frequency based diversification)

Local Search Based Metaheuristics (1)
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Local Search Based Metaheuristics (2)

• Which method is better?

• Depends on your needs

▫ SA is easier to implement?

▫ SA is easier to use/understand?

▫ TS is more flexible and robust?

▫ TS requires a better understanding of the 
problem?

▫ TS requires more ”tuning”?

▫ TS produces better overall results?



Evolutionary Computation

• Evolutionary computation is a family 
of algorithms for global optimization inspired 
by biological evolution.

• These methods have been studying in Soft 
Computing or Computatinal Intelligence field. 

• In evolutionary computation, an initial set of 
candidate solutions is generated and iteratively 
updated.

• These methods are based on population, 
generation and biological operators. 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Biological_evolution


Some Evolutionary Algorithms: 

• Ant Colony Optimization

• Cultural Algorithms

• Diffrential Evolution

• Dual-Phase Evolution

• Genetic Algorithms

• Memetic Algorithms

• Particle Swarm Optimization

• Learnable Evolution Models

• Gene Expression Programming

• Firefly Algorithms and etc.
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Genetic Algorithms

• We have now studied two Metaheuristics based 
on the idea of a Local Search

• It is time to look at methods that are based on 
different mechanisms

• One such method will be the Genetic Algorithm
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The Genetic Algorithm

• Directed search algorithms based on the 
mechanics of biological evolution

• Developed by John Holland, University of 
Michigan (1970’s)

▫ To understand the adaptive processes of natural 
systems

▫ To design artificial systems software that retains 
the robustness of natural systems
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Genetic Algorithms

• Provide efficient, effective techniques for 
optimization and machine learning applications

• Widely-used today in business, scientific and 
engineering circles
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Genetic Algorithms (GA)

• Function Optimization

• AI (Games,Pattern recognition ...)

• OR after a while

• Basic idea: 

▫ intelligent exploration of the search space based 
on random search

▫ analogies from biology 
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GA - Analogies with biology

• Representation of complex objects
by a vector of simple components

• Chromosomes

• Selective breeding

• Darwinistic evolution

• Classical GA: Binary encoding
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Components of a GA
A problem to solve, and ...

• Encoding technique         (gene, chromosome)

• Initialization procedure                (creation)

• Evaluation function                 (environment)

• Selection of parents               (reproduction)

• Genetic operators    (mutation, recombination)

• Parameter settings             (practice and art)
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Classical GA: 

Binary Chromosomes

1 2 3 4 5 6 7

1 0 1 0 0 1 0

Chromosome, component vector, vector, string, solution,

individual  x=(x1, ... , x7)

Gene, Component, Variable, x3

Locus, position Allele, value
x3{0,1}

Alleles, domain
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Genotype, Phenotype, Population

• Genotype
▫ chromosome
▫ Coding of chromosomes
▫ coded string, set of coded strings

• Phenotype
▫ The physical expression
▫ Properties of a set of solutions 

• Population – a set of solutions
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The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted 

members

parents

children

modified

children

evaluated children
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Evaluation

• The evaluator decodes a chromosome and assigns it 
a fitness measure

• The evaluator is the only link between a classical GA 
and the problem it is solving

evaluation

evaluated

children

modified

children
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Evaluation of Individuals

• Adaptability – ”fitness”

• Relates to the objective function value for a 
COP

• Fitness is maximized

• Used in selection (”Survival of the fittest”)

• Often normalized

 f :S 0,1
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Genetic Operators

• Manipulates chromosomes/solutions

• Mutation: Unary operator

▫ Inversions

• Crossover: Binary operator
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GA - Evolution

• N generations of populations
• For every step in the evolution

▫ Selection of individuals for genetic 
operations

▫ Creation of new individuals (reproduction) 
▫ Mutation
▫ Selection of individuals to survive

• Fixed population size M
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Chromosome Modification

modification
children

• Modifications are stochastically triggered

• Operator types are:

▫ Mutation

▫ Crossover (recombination)

modified children
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GA - Mutation

1 2 3 4 5 6 7

1 0 1 0 0 1 0

1 2 3 4 5 6 7

1 0 1 1 0 1 0
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Mutation: Local Modification

Before: (1  0  1  1  0  1  1  0)

After: (1  0  1  0  0  1  1  0)

Before: (1.38   -69.4   326.44   0.1)

After: (1.38   -67.5   326.44   0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the population
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P1 (0 1 1 0 1 0 0 0)            (0 1 1 1 1 0 1 0)   C1

P2 (1 1 0 1 1 0 1 0)            (1 1 0 0 1 0 0 0)   C2

Crossover is a critical feature of genetic

algorithms:

▫ It greatly accelerates search early in evolution of a 
population

▫ It leads to effective combination of schemata 
(subsolutions on different chromosomes)

Crossover: Recombination
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Reproduction

reproduction

population

parents

children

Parents are selected at random with selection 

chances biased in relation to chromosome 

evaluations
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GA - Evolution

Generation X Generation X+1

Cross-over

Mutation

Selection
M=10
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Population

Chromosomes could be:
▫ Bit strings                                         (0101 ... 1100)

▫ Real numbers                     (43.2 -33.1 ... 0.0 89.2) 

▫ Permutations of element     (E11 E3 E7 ... E1 E15)

▫ Lists of rules                       (R1 R2 R3 ... R22 R23)

▫ Program elements               (genetic programming)

▫ ... any data structure ...

population
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Classical GA: Binary chromosomes

• Functional optimization
▫ Chromosome corresponds to a binary encoding of a

real number - min/max of an arbitrary function

• COP, TSP as an example 
▫ Binary encoding of a solution  
▫ Often better with a more direct representation 

(e.g. sequence representation)

1 2 3 4 5 6 7

1 0 1 0 0 1 0

1 2 3 4 5 6 7

0 1 1 1 0 0 1
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1 2 3 4 5 6 7

0 1 1 0 0 1 0 Child 2

1 2 3 4 5 6 7

1 0 1 1 0 0 1
Child 1

GA - Classical Crossover (1-point)

• One parent is selected based on fitness

• The other parent is selected randomly

• Random choice of cross-over point

1 2 3 4 5 6 7

1 0 1 0 0 1 0
Parent 1

1 2 3 4 5 6 7

0 1 1 1 0 0 1
Parent 2

Cross-over point
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GA – Classical Crossover
• Arbitrary (or worst) individual in the population is 

changed with one of the two offspring (e.g. the best)
• Reproduce as long as you want
• Can be regarded as a sequence of almost equal 

populations
• Alternatively:

▫ One parent selected according to fitness
▫ Crossover until (at least) M offspring are created
▫ The new population consists of the offspring

• Lots of other possibilities ...
• Basic GA with classical crossover and mutation often 

works well
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GA – Standard Reproduction Plan

• Fixed population size
• Standard cross-over

▫ One parent selected according to fitness
▫ The other selected randomly
▫ Random cross-over point
▫ A random individual is exchanged with one of the offspring

• Mutation
▫ A certain probability that an individual mutate
▫ Random choice of which gene to mutate
▫ Standard: mutation of offspring
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Deletion

• Generational GA:
entire populations replaced each iteration

• Steady-state GA:
a few members replaced each generation

population

discard

discarded members
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An Abstract Example

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N
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A Simple Example

The Traveling Salesman Problem:

Find a tour of a given set of cities so 
that 

▫ each city is visited only once

▫ the total distance traveled is 
minimized
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Representation

Representation is an ordered list of city

numbers known as an order-based GA.

1) London     3) Dunedin        5) Beijing     7) Tokyo

2) Venice      4) Singapore     6) Phoenix   8) Victoria

City List 1 (3   5   7   2   1   6   4   8)

City List 2 (2   5   7   6   8   1   3   4)



Crossover combines inversion and

recombination:

Parent1 (3   5   7   2   1   6   4   8)

Parent2 (2   5   7   6   8   1   3   4)

Child (5   8   7   2   1   6   3   4)

This operator is called order-based crossover.

36

Crossover



Mutation involves reordering of the list:

* *

Before:       (5   8   7   2   1   6   3   4)

After:         (5   8   6   2   1   7   3   4)

37

Mutation



38

TSP Example: 30 Cities
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Solution i (Distance = 941)
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Solution j (Distance = 800)
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Solution k (Distance = 652)
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Best Solution (Distance = 420)



An Example with Binary Coding 

Representation
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Initial Population and Coding

Consider the problem: max ( ),
x

x xf n 

nibxa iii ,...,2,1 , 

Suppose we wish to represent xi to d decimal places. 

That is each range              needs to be cut into   (bi-

ai).10d equal sizes. Let mi be the smallest integer 

such that                                  

Then xi can be coded as a binary string of length mi.

a bi i

.1210*)(  imd

ii ab

12
*)string'binary '(






im

ii
ii

ab
decimalax

Also, to interpret the string, we use:
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represented by a binary string of length:

m mi

i

n





1

where the first m1 bits map x1 into a value from the 

range [a1,b1], the next group of m2 bits map x2 into a 

value from the range [a2,b2] etc; the last mn bits map 

xn into a value from the range [an,bn].

To initialise a population, we need to decide upon the 

number of chromosomes (pop_size). We then initialise 

the bit patterns, often randomly, to provide an initial 

set of potential solutions.
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Selection (roulette wheel principle)

We mathematically construct a ‘roulette wheel’ with slots sized 

according to fitness values. Spinning this wheel will then select 

a new population according to these fitness values with the 

chromosomes with the highest fitness having the greatest 

chance of selection (see the procedure in next slide)



471) Calculate the fitness value eval(vi) for each 

chromosome vi (i = 1,...,pop_size)

2) Find the total fitness of the population

F eval vi

i

pop size




 ( )
_

1

3) Calculate the probability of a selection, pi, for each 

chromosome vi (i = 1,...,pop_size)

p
eval v

F
i

i
( )

4) Calculate a cumulative probability qi for each 

chromosome vi (i = 1,...,pop_size)

q pi i

j

i





1
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• spin the roulette wheel pop_size times and choose a chromosome each 

time

• How? (see below)

1) Generate a random number r in the range [0,1]

2) If r < q1, select the first chromosome v1; otherwise 

select the ith chromosome vi such that: 

q r q i pop sizei i    1 2 , ( _ )

Note that some chromosomes would be selected more 

than once: the best chromosomes get more copies and 

worst die off  “survival of the fittest”

All the chromosomes selected then replace the 

previous set to obtain a new population.
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p1

p2
p3

p4

p5

p6

p7

p8

p9

p10 p11

p12

segment area 

proportional to 

pi, i=1,...,12

Example:
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Crossover
We choose a parameter value pc as the probability of 

crossover. Then the expected number of chromosomes 

to undergo the crossover operation will be pc*pop_size. 

We proceed as follows. 

For each chromosome in the new population do:

1) Generate a random number r from the range 

[0,1].

2) If r < pc, then select the given chromosome for 

crossover.

ensuring that an even number is selected. Now we 

mate the selected chromosomes randomly.
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For each pair of chromosomes we generate a random 

number pos from the range [1,m-1], where m is the 

number of bits in each chromosome. The number pos

indicates the position of the crossing point. Two 

chromosomes:

(b1 b2 … bpos bpos+1 … bm)

(c1 c2 … cpos cpos+1 … cm)

are replaced by a pair of their offspring (children)

(b1 b2 … bpos cpos+1 … cm)

(c1 c2 … cpos bpos+1 … bm)
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Mutation

We choose a parameter value pm as the probability of 

mutation. Mutation is performed on a bit-by-bit basis 

giving the expected number of mutated bits as

pm * m * pop_size. Every bit, in all chromosomes in the 

whole population, has an equal chance to undergo 

mutation, that is change from a 0 to 1 or vice versa. 

The procedure is:

For each chromosome in the current population, and 

for each bit within the chromosome:

1) Generate a random number r from the range [0,1].

2) If r < pm, mutate the bit.
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Elitism

It is usual to have a means for ensuring that the best 

value in a population is not lost in the selection 

process. One way is to store the best value before 

selection and, after selection, replace the poorest 

value with this stored best value.
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Example max ( ) sin( ) . ,

x
f x x x x    10 10 1 2   

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

x

f(x)

global max
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Let us work to a precision of two decimal 

places. then the chromosome length m must 

satisfy:

Also let pop_size = 10, pc = 0.25, pm = 0.04

To ensure that a positive fitness value is 

always achieved we will work on val = f(x) + 2

2 − −1 102 ≤ 2𝑚 − 1 → 2𝑚 ≥ 301 → 𝑚 = 9

Representation



56Consider that the initial population has been randomly 

selected as follows (giving also the corresponding values of x, 

val, probabilities and accumulated probabilities)

 population x val p q 

v1 0 1 1 1 0 1 1 0 1 0.39 2.89 0.09 0.09 

v2 0 0 0 1 1 1 0 1 0 -0.66 3.63 0.11 0.20 

v3* 1 1 0 1 0 0 0 1 0 1.45 4.44 0.14 0.34 

v4 1 0 1 0 1 1 1 1 0 1.05 4.04 0.13 0.47 

v5 0 0 1 0 0 1 1 0 1 -0.55 2.45 0.08 0.55 

v6 0 0 0 1 0 0 1 1 0 -0.78 2.48 0.08 0.63 

v7 0 0 0 0 0 1 1 1 0 -0.92 2.51 0.08 0.71 

v8 0 0 0 1 1 1 0 0 0 -0.67 3.53 0.11 0.82 

v9 0 1 1 1 1 1 1 1 1 0.50 3.05 0.09 0.91 

v10 1 0 0 1 1 0 0 1 1 0.80 3.06 0.09 1.00 
 

* fittest member of the population

Note for v1: dec v

x

F val p

( )

.

.
.

.
.

1

2 3 5 6 7

9

1 2 2 2 2 2 237

1
237 3

2 1
0 39

32 08
2 89

32 08
0 09

      

   





    



57Selection

Assume 10 random numbers, range [0,1], have 

been obtained as follows:

0.47  0.61  0.72  0.03  0.18  0.69  0.83  0.68  0.54  0.83

These will select:

0.47  0.61  0.72  0.03  0.18  0.69  0.83  0.68  0.54  0.83

v4         v6 v8      v1        v2 v7      v9         v7 v5      v9

giving the new population:
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Note that the best chromosome v3 in the original 

population has not been selected and would be 

destroyed unless elitism is applied.

 Population 

before selection 

 

selection 

Population after 

selection 

v1 0 1 1 1 0 1 1 0 1 4 1 0 1 0 1 1 1 1 0 

v2 0 0 0 1 1 1 0 1 0 5 0 0 0 1 0 0 1 1 0 

v3 1 1 0 1 0 0 0 1 0  0 0 0 1 1 1 0 0 0 

v4 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 

v5 0 0 1 0 0 1 1 0 1 9 0 0 0 1 1 1 0 1 0 

v6 0 0 0 1 0 0 1 1 0 2 0 0 0 0 0 1 1 1 0 

v7 0 0 0 0 0 1 1 1 0 6,8 0 1 1 1 1 1 1 1 1 

v8 0 0 0 1 1 1 0 0 0 3 0 0 0 0 0 1 1 1 0 

v9 0 1 1 1 1 1 1 1 1 7,10 0 0 1 0 0 1 1 0 1 

v10 1 0 0 1 1 0 0 1 1  0 1 1 1 1 1 1 1 1 
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Assume  the 10 random numbers:

1 2 3 4 5 6 7 8 9 10

0.07 0.94  0.57  0.36  0.31  0.14 0.60  0.07 0.07 1.00

These will select v1, v6, v8, v9 for crossover.

Now assume 2 more random numbers in the 

range [1,8] are obtained: 

Crossover (pc = 0.25)

7 20 335. .       bits 8 and 4.
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Mating v1 and v6 crossing over at bit 8:

v

v

1

6

1 0 1 0 1 1 1 1 0

0 0 0 0 0 1 1 1 0
no change

Mating v8 and v9 crossing over at bit 4:

v

v

8

9

0 0 0 0 0 1 1 1 0

0 0 1 0 0 1 1 0 1

produces

v

v

8

9

0 0 0 0 0 1 1 0 1

0 0 1 0 0 1 1 1 0

giving the new population:
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population before

crossover

population after

crossover

v1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0

v2 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0

v3 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

v4 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1

v5 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0

v6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0

v7 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

v8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1

v9 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0

v10 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

bit for 
mutation



62Mutation (pm = 0.04)

Suppose a random number generator selects bit 2 of v2

and bit 8 of v9 to mutate, resulting in:

population after

mutation

x val

v1 1 0 1 0 1 1 1 1 0 1.05 4.04

v2 0 1 0 1 0 0 1 1 0 -0.02 3.02

v3 0 0 0 1 1 1 0 0 0 -0.67 3.53

v4 0 1 1 1 0 1 1 0 1 0.39 2.89

v5 0 0 0 1 1 1 0 1 0 -0.66 3.63

v6 0 0 0 0 0 1 1 1 0 -0.92 2.51

v7 0 1 1 1 1 1 1 1 1 0.50 3.05

v8** 0 0 0 0 0 1 1 0 1 -0.92 2.37

v9 0 0 1 0 0 1 1 0 0 -0.55 2.45

v10 0 1 1 1 1 1 1 1 1 0.50 3.05

Total fitness F = 30.54

** weakest
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So far the iteration has resulted in a decrease in overall fitness 

(from 32.08 to 30.54). However, if we now apply elitism we 

replace v8 in the current population by v3 from the original 

population, to produce:

 population after 

mutation 

x val 

v1 1 0 1 0 1 1 1 1 0 1.05 4.04 

v2 0 1 0 1 0 0 1 1 0 -0.02 3.02 

v3 0 0 0 1 1 1 0 0 0 -0.67 3.53 

v4 0 1 1 1 0 1 1 0 1 0.39 2.89 

v5 0 0 0 1 1 1 0 1 0 -0.66 3.63 

v6 0 0 0 0 0 1 1 1 0 -0.92 2.51 

v7 0 1 1 1 1 1 1 1 1 0.50 3.05 

v8 1 1 0 1 0 0 0 1 0 1.45 4.44 

v9 0 0 1 0 0 1 1 0 0 -0.55 2.45 

v10 0 1 1 1 1 1 1 1 1 0.50 3.05 
 

Total fitness F = 32.61
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resulting now in an increase of overall 

fitness (from 32.08 to 32.61) at the end of 

the iteration.

The GA would now start again by 

computing a new roulette wheel and 

repeating selection, crossover, mutation 

and elitism; repeating this procedure for a 

pre-selected number of iterations.
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-1 0 1 2
-1

0

1

2

3
iteration 40

0 20 40
3

3.5

4

4.5

5
best and average values

-1 0 1 2
0

10

20

30
x distribution

0 10 20

0

10

20

30

chromosomes

Final results from a MATLAB GA program using parameters:

pop_size = 30,   m = 22,   pc = 0.25,   pm=0.01
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1.8500    4.8500    1.8503    4.8502    1.8500    4.8500

1.8496    4.8495    1.8500    4.8500    1.8500    4.8500

0.3503    2.6497    1.8504    4.8502    1.8269    4.3663

1.8504    4.8502    1.8503    4.8502    1.8500    4.8500

1.8265    4.3520    1.8503    4.8502    1.8386    4.7222

1.8500    4.8500    1.8496    4.8495    1.8500    4.8500

1.8503    4.8502    1.8504    4.8502    1.8500    4.8500

1.8500    4.8500    1.8503    4.8502    1.8500    4.8500

1.8496    4.8495    1.8496    4.8495    1.8503    4.8502

1.8500    4.8500    1.8500    4.8500    1.8968    3.1880

x          val x          val x           val

Tabulated results:

The optimum val = 4.8502 at x = 1.8504

Hence:

remembering that  val(x) = f(x) + 2

max ( ) sin( ) . ,

. .

x
f x x x x

x

    

 

10 10 1 2

2 8502 18504

   

  at  


