
Simulation

Lecture H3

Heuristic Methods: Genetic Algorithms

Author: Saeed Bastani
saeed.bastani@gmail.com

Teacher: Mohammadhassan Safavi
Mohammadhassan.safavi@eit.lth.se

Spring 2018

mailto:saeed.bastani@gmail.com

Outline

 Introduction to Genetic Algorithms (GA)

How does GA works?

 GA Parameters and Operations

 Examples

3

• The different methods employ very different
techniques in order explore a larger part of the
search space

▫ Simulated Annealing relies on controlled random
movement

▫ Tabu Search relies on memory structures,
recording enough information to guide the search
to different areas of the search space (e.g.,
frequency based diversification)

Local Search Based Metaheuristics (1)

4

Local Search Based Metaheuristics (2)

• Which method is better?

• Depends on your needs

▫ SA is easier to implement?

▫ SA is easier to use/understand?

▫ TS is more flexible and robust?

▫ TS requires a better understanding of the
problem?

▫ TS requires more ”tuning”?

▫ TS produces better overall results?

Evolutionary Computation

• Evolutionary computation is a family
of algorithms for global optimization inspired
by biological evolution.

• These methods have been studying in Soft
Computing or Computatinal Intelligence field.

• In evolutionary computation, an initial set of
candidate solutions is generated and iteratively
updated.

• These methods are based on population,
generation and biological operators.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Biological_evolution

Some Evolutionary Algorithms:

• Ant Colony Optimization

• Cultural Algorithms

• Diffrential Evolution

• Dual-Phase Evolution

• Genetic Algorithms

• Memetic Algorithms

• Particle Swarm Optimization

• Learnable Evolution Models

• Gene Expression Programming

• Firefly Algorithms and etc.

7

Genetic Algorithms

• We have now studied two Metaheuristics based
on the idea of a Local Search

• It is time to look at methods that are based on
different mechanisms

• One such method will be the Genetic Algorithm

8

The Genetic Algorithm

• Directed search algorithms based on the
mechanics of biological evolution

• Developed by John Holland, University of
Michigan (1970’s)

▫ To understand the adaptive processes of natural
systems

▫ To design artificial systems software that retains
the robustness of natural systems

9

Genetic Algorithms

• Provide efficient, effective techniques for
optimization and machine learning applications

• Widely-used today in business, scientific and
engineering circles

10

Genetic Algorithms (GA)

• Function Optimization

• AI (Games,Pattern recognition ...)

• OR after a while

• Basic idea:

▫ intelligent exploration of the search space based
on random search

▫ analogies from biology

11

GA - Analogies with biology

• Representation of complex objects
by a vector of simple components

• Chromosomes

• Selective breeding

• Darwinistic evolution

• Classical GA: Binary encoding

12

Components of a GA
A problem to solve, and ...

• Encoding technique (gene, chromosome)

• Initialization procedure (creation)

• Evaluation function (environment)

• Selection of parents (reproduction)

• Genetic operators (mutation, recombination)

• Parameter settings (practice and art)

13

Classical GA:

Binary Chromosomes

1 2 3 4 5 6 7

1 0 1 0 0 1 0

Chromosome, component vector, vector, string, solution,

individual x=(x1, ... , x7)

Gene, Component, Variable, x3

Locus, position Allele, value
x3{0,1}

Alleles, domain

14

Genotype, Phenotype, Population

• Genotype
▫ chromosome
▫ Coding of chromosomes
▫ coded string, set of coded strings

• Phenotype
▫ The physical expression
▫ Properties of a set of solutions

• Population – a set of solutions

15

16

The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted

members

parents

children

modified

children

evaluated children

17

Evaluation

• The evaluator decodes a chromosome and assigns it
a fitness measure

• The evaluator is the only link between a classical GA
and the problem it is solving

evaluation

evaluated

children

modified

children

18

Evaluation of Individuals

• Adaptability – ”fitness”

• Relates to the objective function value for a
COP

• Fitness is maximized

• Used in selection (”Survival of the fittest”)

• Often normalized

 f :S 0,1

19

Genetic Operators

• Manipulates chromosomes/solutions

• Mutation: Unary operator

▫ Inversions

• Crossover: Binary operator

20

GA - Evolution

• N generations of populations
• For every step in the evolution

▫ Selection of individuals for genetic
operations

▫ Creation of new individuals (reproduction)
▫ Mutation
▫ Selection of individuals to survive

• Fixed population size M

21

Chromosome Modification

modification
children

• Modifications are stochastically triggered

• Operator types are:

▫ Mutation

▫ Crossover (recombination)

modified children

22

GA - Mutation

1 2 3 4 5 6 7

1 0 1 0 0 1 0

1 2 3 4 5 6 7

1 0 1 1 0 1 0

23

Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0)

After: (1 0 1 0 0 1 1 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the population

24

P1 (0 1 1 0 1 0 0 0) (0 1 1 1 1 0 1 0) C1

P2 (1 1 0 1 1 0 1 0) (1 1 0 0 1 0 0 0) C2

Crossover is a critical feature of genetic

algorithms:

▫ It greatly accelerates search early in evolution of a
population

▫ It leads to effective combination of schemata
(subsolutions on different chromosomes)

Crossover: Recombination

25

Reproduction

reproduction

population

parents

children

Parents are selected at random with selection

chances biased in relation to chromosome

evaluations

26

GA - Evolution

Generation X Generation X+1

Cross-over

Mutation

Selection
M=10

27

Population

Chromosomes could be:
▫ Bit strings (0101 ... 1100)

▫ Real numbers (43.2 -33.1 ... 0.0 89.2)

▫ Permutations of element (E11 E3 E7 ... E1 E15)

▫ Lists of rules (R1 R2 R3 ... R22 R23)

▫ Program elements (genetic programming)

▫ ... any data structure ...

population

28

Classical GA: Binary chromosomes

• Functional optimization
▫ Chromosome corresponds to a binary encoding of a

real number - min/max of an arbitrary function

• COP, TSP as an example
▫ Binary encoding of a solution
▫ Often better with a more direct representation

(e.g. sequence representation)

1 2 3 4 5 6 7

1 0 1 0 0 1 0

1 2 3 4 5 6 7

0 1 1 1 0 0 1

29

1 2 3 4 5 6 7

0 1 1 0 0 1 0 Child 2

1 2 3 4 5 6 7

1 0 1 1 0 0 1
Child 1

GA - Classical Crossover (1-point)

• One parent is selected based on fitness

• The other parent is selected randomly

• Random choice of cross-over point

1 2 3 4 5 6 7

1 0 1 0 0 1 0
Parent 1

1 2 3 4 5 6 7

0 1 1 1 0 0 1
Parent 2

Cross-over point

30

GA – Classical Crossover
• Arbitrary (or worst) individual in the population is

changed with one of the two offspring (e.g. the best)
• Reproduce as long as you want
• Can be regarded as a sequence of almost equal

populations
• Alternatively:

▫ One parent selected according to fitness
▫ Crossover until (at least) M offspring are created
▫ The new population consists of the offspring

• Lots of other possibilities ...
• Basic GA with classical crossover and mutation often

works well

31

GA – Standard Reproduction Plan

• Fixed population size
• Standard cross-over

▫ One parent selected according to fitness
▫ The other selected randomly
▫ Random cross-over point
▫ A random individual is exchanged with one of the offspring

• Mutation
▫ A certain probability that an individual mutate
▫ Random choice of which gene to mutate
▫ Standard: mutation of offspring

32

Deletion

• Generational GA:
entire populations replaced each iteration

• Steady-state GA:
a few members replaced each generation

population

discard

discarded members

33

An Abstract Example

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N

34

A Simple Example

The Traveling Salesman Problem:

Find a tour of a given set of cities so
that

▫ each city is visited only once

▫ the total distance traveled is
minimized

35

Representation

Representation is an ordered list of city

numbers known as an order-based GA.

1) London 3) Dunedin 5) Beijing 7) Tokyo

2) Venice 4) Singapore 6) Phoenix 8) Victoria

City List 1 (3 5 7 2 1 6 4 8)

City List 2 (2 5 7 6 8 1 3 4)

Crossover combines inversion and

recombination:

Parent1 (3 5 7 2 1 6 4 8)

Parent2 (2 5 7 6 8 1 3 4)

Child (5 8 7 2 1 6 3 4)

This operator is called order-based crossover.

36

Crossover

Mutation involves reordering of the list:

* *

Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)

37

Mutation

38

TSP Example: 30 Cities

39

Solution i (Distance = 941)

40

Solution j (Distance = 800)

41

Solution k (Distance = 652)

42

Best Solution (Distance = 420)

An Example with Binary Coding

Representation

44
Initial Population and Coding

Consider the problem: max (),
x

x xf n 

nibxa iii ,...,2,1 , 

Suppose we wish to represent xi to d decimal places.

That is each range needs to be cut into (bi-

ai).10d equal sizes. Let mi be the smallest integer

such that

Then xi can be coded as a binary string of length mi.

a bi i

.1210*)( imd

ii ab

12
*)string'binary '(






im

ii
ii

ab
decimalax

Also, to interpret the string, we use:

45Each chromosome (population member) is

represented by a binary string of length:

m mi

i

n





1

where the first m1 bits map x1 into a value from the

range [a1,b1], the next group of m2 bits map x2 into a

value from the range [a2,b2] etc; the last mn bits map

xn into a value from the range [an,bn].

To initialise a population, we need to decide upon the

number of chromosomes (pop_size). We then initialise

the bit patterns, often randomly, to provide an initial

set of potential solutions.

46

Selection (roulette wheel principle)

We mathematically construct a ‘roulette wheel’ with slots sized

according to fitness values. Spinning this wheel will then select

a new population according to these fitness values with the

chromosomes with the highest fitness having the greatest

chance of selection (see the procedure in next slide)

471) Calculate the fitness value eval(vi) for each

chromosome vi (i = 1,...,pop_size)

2) Find the total fitness of the population

F eval vi

i

pop size




 ()
_

1

3) Calculate the probability of a selection, pi, for each

chromosome vi (i = 1,...,pop_size)

p
eval v

F
i

i
()

4) Calculate a cumulative probability qi for each

chromosome vi (i = 1,...,pop_size)

q pi i

j

i





1

48The selection process:
• spin the roulette wheel pop_size times and choose a chromosome each

time

• How? (see below)

1) Generate a random number r in the range [0,1]

2) If r < q1, select the first chromosome v1; otherwise

select the ith chromosome vi such that:

q r q i pop sizei i    1 2 , (_)

Note that some chromosomes would be selected more

than once: the best chromosomes get more copies and

worst die off  “survival of the fittest”

All the chromosomes selected then replace the

previous set to obtain a new population.

49

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10 p11

p12

segment area

proportional to

pi, i=1,...,12

Example:

50
Crossover
We choose a parameter value pc as the probability of

crossover. Then the expected number of chromosomes

to undergo the crossover operation will be pc*pop_size.

We proceed as follows.

For each chromosome in the new population do:

1) Generate a random number r from the range

[0,1].

2) If r < pc, then select the given chromosome for

crossover.

ensuring that an even number is selected. Now we

mate the selected chromosomes randomly.

51

For each pair of chromosomes we generate a random

number pos from the range [1,m-1], where m is the

number of bits in each chromosome. The number pos

indicates the position of the crossing point. Two

chromosomes:

(b1 b2 … bpos bpos+1 … bm)

(c1 c2 … cpos cpos+1 … cm)

are replaced by a pair of their offspring (children)

(b1 b2 … bpos cpos+1 … cm)

(c1 c2 … cpos bpos+1 … bm)

52
Mutation

We choose a parameter value pm as the probability of

mutation. Mutation is performed on a bit-by-bit basis

giving the expected number of mutated bits as

pm * m * pop_size. Every bit, in all chromosomes in the

whole population, has an equal chance to undergo

mutation, that is change from a 0 to 1 or vice versa.

The procedure is:

For each chromosome in the current population, and

for each bit within the chromosome:

1) Generate a random number r from the range [0,1].

2) If r < pm, mutate the bit.

53

Elitism

It is usual to have a means for ensuring that the best

value in a population is not lost in the selection

process. One way is to store the best value before

selection and, after selection, replace the poorest

value with this stored best value.

54
Example max () sin() . ,

x
f x x x x    10 10 1 2

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

x

f(x)

global max

55

Let us work to a precision of two decimal

places. then the chromosome length m must

satisfy:

Also let pop_size = 10, pc = 0.25, pm = 0.04

To ensure that a positive fitness value is

always achieved we will work on val = f(x) + 2

2 − −1 102 ≤ 2𝑚 − 1 → 2𝑚 ≥ 301 → 𝑚 = 9

Representation

56Consider that the initial population has been randomly

selected as follows (giving also the corresponding values of x,

val, probabilities and accumulated probabilities)

 population x val p q

v1 0 1 1 1 0 1 1 0 1 0.39 2.89 0.09 0.09

v2 0 0 0 1 1 1 0 1 0 -0.66 3.63 0.11 0.20

v3* 1 1 0 1 0 0 0 1 0 1.45 4.44 0.14 0.34

v4 1 0 1 0 1 1 1 1 0 1.05 4.04 0.13 0.47

v5 0 0 1 0 0 1 1 0 1 -0.55 2.45 0.08 0.55

v6 0 0 0 1 0 0 1 1 0 -0.78 2.48 0.08 0.63

v7 0 0 0 0 0 1 1 1 0 -0.92 2.51 0.08 0.71

v8 0 0 0 1 1 1 0 0 0 -0.67 3.53 0.11 0.82

v9 0 1 1 1 1 1 1 1 1 0.50 3.05 0.09 0.91

v10 1 0 0 1 1 0 0 1 1 0.80 3.06 0.09 1.00

* fittest member of the population

Note for v1: dec v

x

F val p

()

.

.
.

.
.

1

2 3 5 6 7

9

1 2 2 2 2 2 237

1
237 3

2 1
0 39

32 08
2 89

32 08
0 09

      

   





    

57Selection

Assume 10 random numbers, range [0,1], have

been obtained as follows:

0.47 0.61 0.72 0.03 0.18 0.69 0.83 0.68 0.54 0.83

These will select:

0.47 0.61 0.72 0.03 0.18 0.69 0.83 0.68 0.54 0.83

v4 v6 v8 v1 v2 v7 v9 v7 v5 v9

giving the new population:

58

Note that the best chromosome v3 in the original

population has not been selected and would be

destroyed unless elitism is applied.

 Population

before selection

selection

Population after

selection

v1 0 1 1 1 0 1 1 0 1 4 1 0 1 0 1 1 1 1 0

v2 0 0 0 1 1 1 0 1 0 5 0 0 0 1 0 0 1 1 0

v3 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0

v4 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1

v5 0 0 1 0 0 1 1 0 1 9 0 0 0 1 1 1 0 1 0

v6 0 0 0 1 0 0 1 1 0 2 0 0 0 0 0 1 1 1 0

v7 0 0 0 0 0 1 1 1 0 6,8 0 1 1 1 1 1 1 1 1

v8 0 0 0 1 1 1 0 0 0 3 0 0 0 0 0 1 1 1 0

v9 0 1 1 1 1 1 1 1 1 7,10 0 0 1 0 0 1 1 0 1

v10 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

59

Assume the 10 random numbers:

1 2 3 4 5 6 7 8 9 10

0.07 0.94 0.57 0.36 0.31 0.14 0.60 0.07 0.07 1.00

These will select v1, v6, v8, v9 for crossover.

Now assume 2 more random numbers in the

range [1,8] are obtained:

Crossover (pc = 0.25)

7 20 335. . bits 8 and 4.

60
Mating v1 and v6 crossing over at bit 8:

v

v

1

6

1 0 1 0 1 1 1 1 0

0 0 0 0 0 1 1 1 0
no change

Mating v8 and v9 crossing over at bit 4:

v

v

8

9

0 0 0 0 0 1 1 1 0

0 0 1 0 0 1 1 0 1

produces

v

v

8

9

0 0 0 0 0 1 1 0 1

0 0 1 0 0 1 1 1 0

giving the new population:

61
population before

crossover

population after

crossover

v1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0

v2 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0

v3 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

v4 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1

v5 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0

v6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0

v7 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

v8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1

v9 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0

v10 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

bit for
mutation

62Mutation (pm = 0.04)

Suppose a random number generator selects bit 2 of v2

and bit 8 of v9 to mutate, resulting in:

population after

mutation

x val

v1 1 0 1 0 1 1 1 1 0 1.05 4.04

v2 0 1 0 1 0 0 1 1 0 -0.02 3.02

v3 0 0 0 1 1 1 0 0 0 -0.67 3.53

v4 0 1 1 1 0 1 1 0 1 0.39 2.89

v5 0 0 0 1 1 1 0 1 0 -0.66 3.63

v6 0 0 0 0 0 1 1 1 0 -0.92 2.51

v7 0 1 1 1 1 1 1 1 1 0.50 3.05

v8** 0 0 0 0 0 1 1 0 1 -0.92 2.37

v9 0 0 1 0 0 1 1 0 0 -0.55 2.45

v10 0 1 1 1 1 1 1 1 1 0.50 3.05

Total fitness F = 30.54

** weakest

63Elitism

So far the iteration has resulted in a decrease in overall fitness

(from 32.08 to 30.54). However, if we now apply elitism we

replace v8 in the current population by v3 from the original

population, to produce:

 population after

mutation

x val

v1 1 0 1 0 1 1 1 1 0 1.05 4.04

v2 0 1 0 1 0 0 1 1 0 -0.02 3.02

v3 0 0 0 1 1 1 0 0 0 -0.67 3.53

v4 0 1 1 1 0 1 1 0 1 0.39 2.89

v5 0 0 0 1 1 1 0 1 0 -0.66 3.63

v6 0 0 0 0 0 1 1 1 0 -0.92 2.51

v7 0 1 1 1 1 1 1 1 1 0.50 3.05

v8 1 1 0 1 0 0 0 1 0 1.45 4.44

v9 0 0 1 0 0 1 1 0 0 -0.55 2.45

v10 0 1 1 1 1 1 1 1 1 0.50 3.05

Total fitness F = 32.61

64

resulting now in an increase of overall

fitness (from 32.08 to 32.61) at the end of

the iteration.

The GA would now start again by

computing a new roulette wheel and

repeating selection, crossover, mutation

and elitism; repeating this procedure for a

pre-selected number of iterations.

65

-1 0 1 2
-1

0

1

2

3
iteration 40

0 20 40
3

3.5

4

4.5

5
best and average values

-1 0 1 2
0

10

20

30
x distribution

0 10 20

0

10

20

30

chromosomes

Final results from a MATLAB GA program using parameters:

pop_size = 30, m = 22, pc = 0.25, pm=0.01

66

1.8500 4.8500 1.8503 4.8502 1.8500 4.8500

1.8496 4.8495 1.8500 4.8500 1.8500 4.8500

0.3503 2.6497 1.8504 4.8502 1.8269 4.3663

1.8504 4.8502 1.8503 4.8502 1.8500 4.8500

1.8265 4.3520 1.8503 4.8502 1.8386 4.7222

1.8500 4.8500 1.8496 4.8495 1.8500 4.8500

1.8503 4.8502 1.8504 4.8502 1.8500 4.8500

1.8500 4.8500 1.8503 4.8502 1.8500 4.8500

1.8496 4.8495 1.8496 4.8495 1.8503 4.8502

1.8500 4.8500 1.8500 4.8500 1.8968 3.1880

x val x val x val

Tabulated results:

The optimum val = 4.8502 at x = 1.8504

Hence:

remembering that val(x) = f(x) + 2

max () sin() . ,

. .

x
f x x x x

x

    

 

10 10 1 2

2 8502 18504



 at

